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SUMMARY

The first chapter presents and develops some of the basics of simplicial algebra theory and

the elementary theory of crossed modules of commutative algebras. It contains a ‘step-by-

step’ construction of a free simplicial algebra with given homotopy modules. Some results

regarding this construction are extented.

Chapter Two generalises the ‘higher order Peiffer elements’ for commutative algebras to

dimension 2, 3 and 4 and obtains partial results in higher dimensions.

Chapter Three gives a functor from the category of simplicial algebras to that of crossed

complexes. A direct proof for simplicial algebras is given without needing understanding of

the hypercrossed complex structure used by Carrasco and Cegarra. There is also a section

recalling the particular case of the ‘step-by-step’ construction and giving many of the basic

technical results that relate various structures. Using these data and the higher order Peiffer

elements, we can form a free crossed resolution of a commutative algebra.

Chapter Four and Five mainly study 2-crossed modules, crossed squares and the free-

ness case of those structures. Applying the higher order Peiffer elements, we explore the

relations between the structures mentioned above. This information and the ‘step-by-step’

construction with its k-skeleton are applied to describe algebraic models of the n-type of the

k-skeleton of a free simplicial algebra.

The last two chapters also provide a functor from simplicial algebras to crossed n-cubes

and use all these data to analyse the connections between free 2-crossed modules and free

crossed squares.
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CHAPTER 0

INTRODUCTION

The original motivation for this research was to see what parts of the group theoretic case of

crossed homotopical algebra generalised to the context of commutative algebras and to see

how existing parts of commutative algebra might interact with the analogue. The hope was

for a clarification of the group theoretic situation as well as perhaps introducing ‘new’ tools

into commutative algebra. The existing theory of crossed modules and crossed complexes

within commutative algebras (in [36]) led to the realisation that the Koszul complex was

linked with the construction of a free crossed module. In the group theoretic setting the

interpretation of the levels immediately beyond that of a ‘presentation’ has only just started

(about five years ago) and it is still very unclear what this tells one. This is equally true

in commutative algebra. The idea was that André’s step-by-step construction of simplicial

resolution gave a good means of revealing some of the problems and questions hidden in

these first few levels.

R.Brown and J-L.Loday [10] have noted that if the second dimension G2 of a simplicial

group G is generated by degenerate elements, that is elements coming from lower dimen-

sions, then the image of the second term NG2 of the Moore complex (NG,∂ ) of G by the

differential, ∂ , is

[Kerd0, Kerd1]

where the square brackets denote the commutator subgroup. An easy argument then shows

that this subgroup of NG1 is generated by elements of the form (y x y−1)(s0d1(y)x−1s0d1(y)−1)

and that it is thus exactly the Peiffer subgroup of NG1, the vanishing of which is equivalent

to ∂ : NG1→ NG0 being a crossed module.
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It is clear that one should be able to develop an analogous result for other algebraic

structures and in the case of commutative algebras, it is not difficult to see that if E is a

simplicial algebra in which the subalgebra, E2, is generated by the degenerate elements

then the corresponding image is the ideal Kerd0Kerd1 in N E1 and that it is generated by the

elements x(s0d1 y− y) (see section 2.4.1) this gives the analogous Peiffer ideal for the theory

of crossed modules of algebras. Given the importance of the vanishing of these elements in

the construction of the cotangent complex of Lichtenbaum and Schlessinger, [31], and the

simplicial version of the cotangent complex of Quillen [39], André [1] and Illusie [26], it is

natural to hope for higher order analogues of this result and for an analysis and interpretation

of the structure of the resulting elements in N En, n ≥ 2. In this thesis, the analysis of these

higher elements has been extended to dimension four and partial results obtained in higher

dimensions.

M.André [1] and D.Quillen [39] developed the theories of homotopical algebra and that

of simplicial algebras. They constructed ways of building simplicial resolutions of algebras,

called a ‘step-by-step’ construction, and defined a homology and cohomology of commutative

algebras, which can be ‘computed’ by means of this resolution. The ‘step-by-step’ construc-

tion of a free simplicial algebra is fundamental to the subject matter of this thesis.

The purpose of this thesis is to analyse the ‘Higher Order Peiffer Elements’ and to search

for potential applications arising in the ‘step–by-step’ construction of free simplicial algebras.

The study of the Peiffer elements shows that there are relations between the commutative

algebra analogues of 2-crossed modules and of crossed squares. Applications of the free sim-

plicial algebra give the freeness feature for those structures in terms of the Peiffer elements.

In addition, the ‘step-by-step’ construction with its k-skeleton is applied to define algebraic

models of n-types of the k-skeleton of a free simplicial algebra.

0.1 STRUCTURE OF THESIS

We commence Chapter 1 by giving some general results on simplicial algebras and homo-

topical algebra. The construction of simplicial resolutions is studied in this chapter. This

material is not easy to read in the literature and an attempt has been made to give a clear

exposition. We give an explicit explanation of that together with the basic geometric pic-

tures and also note the result which says: if A is a simplicial algebra, then there exists a free
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simplicial algebra E and an epimorphism

E −→ A

which induces isomorphisms on all homotopy modules.

In addition we collect together the elementary theory of crossed modules of commutative

algebras. We will often use from [36] the link between free crossed modules and Koszul

complexes (Proposition 1.5.2).

In chapter 2 of this thesis, we generalise the Peiffer elements for commutative algebras

to dimensions 2, 3 and 4 and get partial results in higher dimensions. The methods we use

are based on ideas of Conduché, [14], and techniques developed by Carrasco and Cegarra,

[13]. In detail, this gives the following:

Let E be a simplicial commutative algebra with Moore complex NE and for n> 1, let Dn

be the ideal generated by the degenerate elements in dimension n. If En = Dn, then

∂n(N En) = ∂n(In) for all n> 1

where In is an ideal in En generated by a fairly small set of elements which can be explicitly

given.

If n = 2, 3 or 4, then the image by ∂n of the Moore complex of the simplicial algebra

E can be given in the form

∂n(N En) =
∑

I ,J

KI KJ

for ; 6= I , J ⊂ [n− 1] = {0,1, . . . , n− 1} with I ∪ J = [n− 1], where

KI =
⋂

i∈I

Kerdi and KJ =
⋂

j∈J

Kerd j .

In general for n> 4, we can only prove

∑

I ,J

KI KJ ⊆ ∂n(N En).

Chapter 3 provides a functor from simplicial algebras to crossed complexes, analogous to

the group case. We reconsider the particular case of the ‘step-by-step’ construction so as to

define a free crossed resolution of an algebra. We use the above functor and ‘Higher Order

Peiffer Elements’ in order to describe that resolution. Moreover we give several technical

results about the particular case of the ‘step-by-step’ construction.

4



In chapter 4, we define a notion of 2-crossed modules for commutative algebras clarifying

that given in Carrasco’s thesis [12] and A.R.Grandjeán and M.J.Vale [24]. The importance

of this chapter is to characterise 2-crossed modules by means of the second order Peiffer

elements as defined in chapter 2.

The freeness property for this concept is explicitly built in terms of the ‘step-by-step’

construction. The k-skeleton of that construction induces algebraic models of n-types of the

k-skeleton of a free simplicial algebra.

In the final chapter, we recall from [12] the definition of crossed squares of commutative

algebras with examples. We use the second order Peiffer elements to determine crossed

squares. By taking the idea of Ellis [21] for a construction of a free crossed square, we form

a free crossed square for commutative algebras in terms of 2-dimensional data for a free

simplicial algebra. We end this chapter by describing a functor from simplicial algebras to

crossed n-cubes in order to give various technical results.

5



CHAPTER 1

SIMPLICIAL RESOLUTIONS AND

CROSSED MODULES OF ALGEBRAS

INTRODUCTION

Let k be a fixed commutative ring with 1 6= 0 (that is, k is not trivial). All of the k-algebras

discussed herein are assumed to be commutative and associative but we will want to consider

ideals and modules to be algebras and so will not be requiring algebras to have unit elements.

The category of all k-modules will be denoted by Mod.

Recall that a commutative k-algebra (or algebra over k) is a k-module M with an k-

bilinear map

M ×M −→ M

(m1, m2) 7−→ m1m2

satisfying

i) m1m2 = m2m1 ii) (m1m2)m3 = m1(m2m3)

for all m1, m2, m3 ∈ M . The category of commutative algebras will be denoted by Alg.

We commence this chapter by presenting some aspects of the theory of simplicial alge-

bras. In the first section, we recall some general results on simplicial objects. In particular,

we restrict attention to simplicial objects in the category of commutative algebras. Section

2 deals with the ‘step-by-step’ construction of a free simplicial algebras.

The subsequent sections of this chapter contain a summary of much of the elementary

6



theory of crossed modules of commutative algebras. Section 4 is devoted to a definition

of crossed modules and some examples. In addition we shall give a few results regarding

them. A commutative algebraic version of free crossed modules will be recalled in section 5.

The relation between Koszul complexes and free crossed modules is considered in the last

section.

1.1 SIMPLICIAL ALGEBRAS

In this section we recall a few well-known definitions and facts about simplicial algebras

and homology modules. For more details regarding this, we refer to the book Homologie des

algèbres commutatives by M.André [1].

Definition 1.1.1 A simplicial algebra E is a collection of k-algebras En (n ∈ N) together with,

for each n≥ 0, k-algebra homomorphisms

dn
i : En −→ En−1 0≤ i ≤ n 6= 0,

sn
j : En −→ En+1 0≤ j ≤ n,

which are called face operators and degeneracies respectively. These homomorphisms are re-

quired to satisfy the following axioms:

1. dn−1
i dn

j = dn−1
j−1 dn

i for 0≤ i < j ≤ n,

2. sn+1
i sn

j = sn+1
j+1 sn

i for 0≤ i ≤ j ≤ n,

3. dn+1
i sn

j = sn−1
j−1 dn

i for 0≤ i < j ≤ n,

4. dn+1
i sn

j = id for i = j or i = j + 1,

5. dn+1
i sn

j = sn−1
j dn

i−1 for 0≤ j < i − 1≤ n.

For use in calculation it is often convenient to recall that the above equalities imply the

following ones:

1. did j = d jdi+1 for 0≤ j ≤ i ≤ n,

2. sis j = s jsi−1 for 0≤ j < i ≤ n,

3. sid j = d jsi+1 for j ≤ i,

4. sid j = d j+1si for i > j.

These equations are standard and may be found in [15], [16], [32] and [34].

Elements x ∈ En are called n-dimensional simplices. A simplex x is called degenerate if

x = si(y) for some y .
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A homomorphism of simplicial algebras f: E → F is a set of k-algebra homomorphisms

fn : En→ Fn commuting with all the face operators, dn
i , and degeneracy operators, sn

j , i.e.

di fn = fn−1di , fnsi = si fn−1.

We have thus defined the category of simplicial algebras, which we will denote by SimpAlg.

A geometric interpretation of this definition for low dimensions can be thought of as

follows:

For n= 0, a 0-dimensional simplex is simply a point x ∈ E0 and a 1-dimensional simplex

is just, for x ∈ E1,

d1 x • x // • d0 x

2-dimensional simplices are just triangles: for x ∈ E2

x

•

d1 x

��
•

d2 x

??

d0 x
// •

and 3-dimensional simplices are just tetrahedra:

d1 x

##

•

&&• //

::

##

•
d2 x d0 x

d3 x

;;

•

SS

CC

and so on.

Definition 1.1.2 A simplicial k-module is a family of k-modules En, for n≥ 0, and k-module

homomorphisms satisfying the equalities in definition 1.1.1.
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Remark 1.1.3 For any simplicial module E, there is an associated chain complex of k-modules.

The differentials ∂n : En→ En−1 are defined by

∂n =
n
∑

i=0

(−1)idn
i .

By axiom 1 in the definition of simplicial algebras, ∂n+1∂n = 0. This is thus a chain complex

associated to the simplicial module E. Hence we can speak of the nth homology module Hn(E)

of the simplicial k-module E defined by

Hn(E) =
Ker∂n

Im∂n+1.

Definition 1.1.4 A simplicial algebra E is augmented by specifying a constant simplicial al-

gebra K(E, 0) and a surjective k-algebra homomorphism, f = d0
0 : E0 → E with f d1

0 = f d1
1 :

E1→ E. An augmentation of the simplicial algebra E is a map

E −→ K(E, 0).

An augmented simplicial algebra is acyclic if the corresponding complex is acyclic, i.e. Hn(E)∼= 0

for n> 0 and H0(E)∼= E.

Simplicial resolution of an algebra B

Definition 1.1.5 Let B be a commutative k-algebra. A free simplicial resolution of B consists

of a simplicial algebra E together with an augmentation f : E0 → B such that (E, f ) is acyclic

and each En is free.

We will summarise André ’s construction of a simplicial resolution in section 1.2.

The Moore complex and the homotopy module of a simplicial algebra

Recall that given a simplicial algebra E, the Moore complex (NE,∂ ) of E is the chain

complex defined by

(NE)n =
n−1
⋂

i=0

Kerdn
i

with ∂n : N En→ N En−1 induced from dn
n by restriction.

The nth homotopy module πn(E) of E is the nth homology of the Moore complex of E, i.e.,

πn(E) ∼= Hn(NE,∂ )

=
n
⋂

i=0
Kerdn

i /d
n+1
n+1 (

n
⋂

i=0
Kerdn+1

i ).

9



The interpretation of NE and πn(E) is as follows:

for n= 1, w ∈ N E1,

∂ω • ω // • 0

and w ∈ N E2 looks like

ω

•

0

��
•

∂ω

??

0
// •

and so on.

Note that: w ∈ NE2 is in Ker∂ if it looks like

ω

•

0

��
•

0

??

0
// •

whilst it will give the trivial element of π2(E) if there is a 3-simplex x with w on its 3rd face

and all other faces zero.

This simple interpretation of the elements of NE and πn(E) will ‘pay off’ later by aiding

interpretation of some of the elements in other situations.

By a k-truncated simplicial algebra, we mean a simplicial algebra trkE obtained by forget-

ting dimensions of order> k in a simplicial algebra E. We denote the category of k-truncated

simplicial algebras by TrkSimpAlg. Recall from [16] some facts about the skeleton functor.

In the category of algebras, Alg, there is a truncation functor

trk : SimpAlg −→ TrkSimpAlg

which admits a right adjoint

coskk : TrkSimpAlg −→ SimpAlg

called the k-coskeleton functor, and a left adjoint

skk : TrkSimpAlg −→ SimpAlg,
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called the k-skeleton functor.

Assume given that trk(E) = {E0, E1, . . . , Ek} is a k-truncated simplicial algebra. A family

of homomorphisms

(δ0, . . . ,δk+1) : Xk+1

δ0

//

δk+1

...

//

Ek

δ0

//

δk

...

//

Ek−1

is said to be the simplicial kernel of the family of face homomorphisms (d0, . . . , dk) if it has

the following universal property:

given any family (x0, . . . , xk+1) of k+ 2 homomorphisms

Y

x0
//

xk+1

...

//

Ek

which satisfies the equalities di x j = d j−1 x i (0 ≤ i < j ≤ k + 1) with the last part of the

truncated simplicial algebra, there exists a unique homomorphism

x = 〈x0, ..., xk+1〉 : Y // Xk+1

such that δi x = x i .

Given the simplicial kernel Xk+1, the family of homomorphisms

(αk+1, j , . . . ,α1 j ,α0 j)

defined by

αi j =















s j−1di if i < j

id if i = j or i = j + 1

s jdi−1 if i > j + 1

satisfies the simplicial identities with the last part of the truncated simplicial algebra; hence

there exists a unique s j : Ek→ Xk+1 such that δis j = αi j . The defined (s j)0≤ j≤k form a system

of degeneracies and we have now defined a (k+ 1)-truncated simplicial algebra

{E0, E1, . . . , Ek, Xk+1}.

By iterating this process we obtain the simplicial algebra

coskk(trk(E)) ={E0, E1, . . . , Ek, Xk+1, Xk+2, . . .}

11



called the coskeleton of the truncated simplicial algebra. If F is an simplicial algebra, then

any truncated simplicial algebra

x : trk(E) −→ trk(F)

extends uniquely to a simplicial map

x : E −→ coskk(trk(F)).

The k-skeleton functor can be constructed by a dual process involving simplicial cokernels

(s0, . . . , sk) : Ek

s0
//

sk

...

//

Xk+1

That is, universal systems of k+ 1 maps verifying sis j = s j+1si for 0 ≤ i ≤ j ≤ k− 1. See for

details [16] and [2].

The following lemma is due to Conduché [14] for the group case. We give an obvious

analogue for the commutative algebra version, but we omit its proof which can be obtained

by changing slightly the corresponding result in [22].

Lemma 1.1.6 Let E be a simplicial algebra. The Moore complex of its k-coskeleton coskk(trk(E))is

of length k+ 1, i.e.,

N(coskk(trk(E)))i = 0 for i > k+ 1,

and is identical to the Moore complex of E in dimension less than k+ 1. Moreover

N(coskk(trk(E)))k+1 = Ker(∂k : N Ek −→ N Ek−1)

and the morphism

∂k+1 : N(coskk(trk(E)))k+1 −→ N(coskk(trk(E)))k = N Ek

is injective.

1.2 STEP BY STEP CONSTRUCTIONS

This section is a brief résumé of how to construct simplicial resolutions. The work depends

heavily on a variety of sources, mainly [1], [34], [39]. The reader is referred to the book of

André [1] for full details and more references.
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1.2.1 DEFINITION AND NOTATION

First recall the following notation and terminology which will be used in the construction of

a simplicial resolution.

Let [n] be the ordered set, [n] = {0< 1< ...< n}. We define the following maps: Firstly

the injective monotone map δn
i : [n− 1]→ [n] is given by

δn
i (x) =







x if x < i

x + 1 if x ≥ i

for 0≤ i ≤ n 6= 0. We display all these maps omitting the superscripts as

[0]

δ0 //
δ1 //

[1]

δ0 //
δ1 //
δ2 //

[2]

δ0 //
δ1 //
δ2 //
δ3 //

[3] . . .

On the other hand, an increasing surjective monotone map σn
i : [n+ 1]→ [n] is given by

σn
i (x) =







x if x ≤ i

x − 1 if x > i

for 0≤ i ≤ n. We display them without superscripts as

[0] [1]
σ0oo [2]σ1oo

σ0oo
[3] . . .

σ2oo

σ1oo

σ0oo

We denote by {m, n} the set of increasing surjective maps [m]→ [n] as used in [34].

1.2.2 KILLING ELEMENTS IN HOMOTOPY MODULES

The following section describes the ‘step-by-step’ construction of André [1].

Let E be a simplicial algebra and let k ≥ 1 be fixed. Suppose we are given a set Ω of

elements

{xλ : λ ∈ Λ},

xλ ∈ πk−1(E), then we can choose a corresponding set of elements wλ ∈ N Ek−1 so that

xλ = wλ + ∂k(N Ek).

13



(If k = 1, then as N E0 = E0, the condition that wλ ∈ N E0, is empty.) We want to define

a simplicial algebra, F= E[Ω] with a monomorphism

i : E −→ F

such that

πk−1(i) : πk−1(E) −→ πk−1(F)

‘kills off’ the xλ’s. We do this by adding new indeterminates into N Ek to enlarge it so as to

make i(wλ) ∈ ∂ N Fk. More precisely,

1) Fn is a free En-algebra,

Fn = En[yλ,t] with λ ∈ Λ and t ∈ {n, k}.

2) For 0 ≤ i ≤ n, the algebra homomorphism sn
i : Fn → Fn+1 is obtained from the

homomorphism sn
i : En→ En+1 with the relations

sn
i (yλ,t) = yλ,u with u= tσn

i , t : [n]→ [k].

3) For 0 ≤ i ≤ n 6= 0, the algebra homomorphism dn
i : Fn → Fn−1 is obtained from

dn
i : En→ En−1 with the relations

dn
i (yλ,t) =















yλ,u if the map u= tδn
i is surjective

t ′(wλ) if u= δk
k t ′

0 if u= δk
j t ′ with j 6= k

by extending linearly.

Here t ′ :[n−1]→ [k−1]. It corresponds to a unique algebra homomorphism t ′ :Ek−1→

En−1, c.f. M.André [1].

We now examine this construction for a single element to see what it does:

Example 1.2.1 To explain the construction, we will see how to kill a single element x ∈ π1(E)

(so k = 2). Pick a w ∈ N E1 so that

x = w̄= w+ ∂2(N E2) ∈ π1(E).

14



We thus have the following diagram

E2
//

�� �� ��

F2

������
E1

//

OOOO

�� ��

F1 = E1

OO OO

����
E0

//

OO

F0 = E0

OO

and we need a y ∈ N E2 with

w= ∂ (y) = d2(y) with w̄= w+ ∂2(N E2) ∈ π1(E)

and hence we add a new indeterminate y (which will be non-degenerate) into E2 to form

F2 = E2[y] with d0(y) = d1(y) = 0 and d2(y) = w.

Geometrically for k = 2,

•

0

��

y

•

ω

??

0
// •

which implies

i(w̄) = i(w+ ∂ N E2) = 0

as required. We cannot stop here as the images of y under s0, s1, s2 are not yet defined.

For the next step we build F3 so as to receive the degenerate images of y, i.e.,

F3 = E3[yt],

where t : [3]→ [2]. So there are three degenerate images corresponding to s0(y), s1(y), s2(y).

We set

s0(y) = yσ(0), s1(y) = yσ(1), s2(y) = yσ(2),

15



and also need to construct the face operators

d0, d1, d2, d3 : F3 −→ F2

but these are determined in advance since

d0si(y) = si−1d0(y) = 0 unless i = 0

in which case d0s0(y) = y. We then define recursively the higher dimensional images of y. In

the formula given above this is done all together (following André [1]).

Remark 1.2.2 In the ‘step-by-step’ construction of simplicial resolutions, there are the sub-

sequent properties:

i) Fn = En for n< k,

ii) Fk = a free Ek-algebra over a set of non-degenerate indeterminates, all of whose faces

are zero except the kth,

iii) Fn is a free En-algebra over the degenerate elements for n> k.

Later on, this is called the k-skeleton of a resolution.

We have immediately the following result, as expected.

Proposition 1.2.3 The inclusion of simplicial algebras E ,→ F, where F = E[Ω], induces the

homomorphism

πn(E) −→ πn(F).

For n< k− 1,

πn(E)∼= πn(F)

and for n= k−1, this homomorphism is an epimorphism with kernel generated by elements of

the form w̄λ = wλ + ∂kN Ek.

1.2.3 CONSTRUCTING SIMPLICIAL RESOLUTIONS

The following result is due to André [1].

Theorem 1.2.4 If B is a commutative k-algebra, then it has a simplicial resolution R.
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Proof: The repetition of the above construction will give us the simplicial resolution of

an algebra.

Let B be a commutative k-algebra and let E be a free k-algebra. We denote by K(E, 0)

the simplicial algebra which in each dimension is equal to E and in which each face and

degeneracy map is the identity. We describe the zero step of the construction. It consists

of the choice of a free k-algebra E and a surjection f :E → B which gives an isomorphism

E/Ker f ∼= B as k-algebras. Then we form the trivial simplicial algebra E(0) for which in

every degree n, En = E and dn
i = id = sn

j for all i, j. Thus E(0) = K(E, 0) and π0(E(0)) = E.

Now choose a set Ω0 of generators of the ideal I = Ker(E
f
→ B), and obtain the simplicial

algebra in which E(1)1 = E[Ω0] and for n > 1, E(1)n is a free En-algebra over the degenerate

elements. This simplicial algebra is denoted by E(1) and will be called the 1-skeleton of a

simplicial resolution of an algebra B.

The consequent steps depend on the choice of sets, Ω0, Ω1,Ω2, . . . ,Ωk, . . . Let E(k) be the

simplicial algebra constructed after k steps, the k-skeleton of the resolution. The set Ωk is

formed by elements w of E(k)k with dk
i (w) = 0 for 0≤ i ≤ k and whose images w̄ in πk(E(k))

generate that module over E(k)k .

Finally we have inclusions of simplicial algebras

E= E(0) ⊆ E(1) . . . ⊆ E(k−1) ⊆ E(k) ⊆ . . .

and in passing to the inductive limit (colimit), we obtain an acyclic free simplicial k-algebra

R with Rn = E(k)n if n ≤ k. R is thus a simplicial resolution of k-algebra B. The proof of

theorem is completed. 2

Remark 1.2.5 A variant of the step-by-step construction gives:

if A is a simplicial algebra, then there exists a free simplicial algebra E and an epimor-

phism

E −→ A

which induces isomorphisms on all homotopy modules. The details are omitted.

We have not talked here about the homotopy of simplicial algebra morphisms, and so

will not discuss homotopy invariance of this construction for which see André [1].
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1.3 CROSSED MODULES

J.H.C.Whitehead (1949) [43] described crossed modules in various contexts especially in his

investigations into the algebraic structure of relative homotopy groups. In this section, we

introduce the definition and elementary theory of crossed modules of commutative algebras

given by T.Porter, [36]. More details about this may be found in [42], [18] and [19], see

also [4].

We recall that if M and R are commutative algebras, a map

R×M −→ M

(r, m) 7−→ r ·m,

is a commutative action if and only if

1. k(r ·m) = (kr) ·m= r · (km),

2. r · (m+m′) = r ·m+ r ·m′,

3. (r + r ′) ·m= r ·m+ r ′ ·m,

4. r · (mm′) = (r ·m)m′ = m(r ·m′),

5. (r r ′) ·m= r(r ′ ·m),

for all k ∈ k, m, m′ ∈ M , r, r ′ ∈ R.

Throughout this thesis we denote an action of r ∈ R on m ∈ M by r ·m.

Definition 1.3.1 Let R be a k-algebra with identity. A pre-crossed module of commutative

algebras is an R-algebra C, together with a commutative action of R on C and an R-algebra

morphism

∂ : C −→ R,

such that for all c ∈ C , r ∈ R

C M1) ∂ (r · c) = r∂ c.

This is a crossed R-module if in addition, for all c, c′ ∈ C ,

C M2) ∂ c · c′ = cc′.
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The last condition is called the Peiffer identity. We denote such a crossed module by

(C , R,∂ ). Clearly any crossed module is a pre-crossed module.

Definition 1.3.2 A morphism of crossed modules from (C , R,∂ ) to (C ′, R′,∂ ′) is a pair of

k-algebra morphisms,

θ : C −→ C ′, ψ : R −→ R′,

such that

θ (r · c) =ψ(r) · θ (c) and ∂ ′θ (c) =ψ∂ (c).

In this case, we shall say that θ is a crossed R-module morphism if R = R′ and ψ is the

identity. We therefore can define the category of crossed modules denoting it as XMod.

1.3.1 EXAMPLES

Example 1.3.3 Let I be any ideal of a k-algebra R. Consider an inclusion map

inc. : I −→ R.

Then (I , R, inc.) is a crossed module. Conversely given any crossed R-module ∂ : C → R, one

can easily verify that ∂ C = I is an ideal in R.

Example 1.3.4 Let M be any R-module. It can be considered as an R-algebra with zero mul-

tiplication, and then 0 :M → R is a crossed R-module by 0(c) · c′ = 0c′ = 0 = cc′, for all

c, c′ ∈ C.

Conversely, given any crossed module ∂ : C → R, then Ker∂ is an R/∂ C-module. For this,

see Proposition 1.3.6.

Lemma 1.3.5 Assume given a simplicial algebra E and a simplicial ideal I. The inclusion

inc. : I ,→ E,

induces a map

∂ : π0(I) −→ π0(E),

and E acting on I by multiplication induces an action of π0(E) on π0(I). Then (π0(I),π0(E),∂ )

is a crossed module.
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Proof: CM1) For all e ∈ E,

∂ ([e] · [i]) = [ei],

= [e][inc.(i)],

= [e]∂ ([i]).

CM2) For all i, i′ ∈ I,

∂ ([i]) · [i′] = [inc.(i) · i′],

= [ii′],

= [i][i′].

2

Any crossed module can be obtined as π0 of an ideal inclusion, I ,→ E, of simplicial

algebras but we will not include a proof here. This generalises easily to the crossed n-cubes

of chapter 5.

The following result is due to N.M.Shammu [42].

Proposition 1.3.6 If (C,R, ∂ ) is a crossed R-module, then

i) Ker∂ is a central ideal of C,

ii) both C/C2 and Ker∂ have natural R/∂ C-module structure.

Proof: i) Since, for c ∈ C , a ∈ Ker∂ ,

ac = ∂ a · c = 0c = 0= c0= c · ∂ a = ca

as required.

ii) It is enough to show that ∂ C acts trivially on Ker∂ and C/C2.

For a ∈ Ker∂ , ∂ c ∈ ∂ C , by ∂ c · a = ca = c · ∂ a = c0= 0, ∂ C acts trivially on Ker∂ .

For ∂ c ∈ ∂ C , c′ + C ∈ C/C2, we obtain the following

∂ c · (c′ + C2) = ∂ c · c′ + C2

= cc′ + C2

= 0,

so ∂ C acts trivially on C/C2. Hence we can unambiguously define maps

R/∂ C × Ker∂ −→ Ker∂ R/∂ C × C/C2 −→ C/C2

(r + ∂ c, a) 7−→ ra (r + ∂ c, c + C2) 7−→ rc + C2
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and it is routine to check that this turns the abelian groups Ker∂ and C/C2 into R/∂ C-

modules. Thus Ker∂ and C/C2 have R/∂ C-module structure. 2

1.4 FREE CROSSED MODULES

The notion of a free crossed module of commutative algebras was earlier described by E.R.

Aznar [4]. In this section, we recall how to form a free crossed module.

Definition 1.4.1 Let (C , R,∂ ) be a crossed module, let Y be a set and let ν : Y → C be a

function, then (C , R,∂ ) is said to be a free crossed R-module with basis ν or, alternatively, on

the function ∂ ν : Y → R if for any crossed R-module (C ′, R,∂ ′) and function ν′ : Y → C ′ such

that ∂ ′ν′ = ∂ ν, there is a unique morphism

φ : (C , R,∂ )→ (C ′, R,∂ ′)

such that φν= ν′.

The crossed module (C , R,∂ ) is totally free if R is a free algebra. On replacing ‘crossed’

by ‘pre-crossed’ in the above definition of a (totally) free crossed module, we obtain the

appropriate definition of a (totally) free pre-crossed module. The following proof of the result

is taken from T.Porter [36].

Theorem 1.4.2 A free crossed module R-module (C,R,∂ ) exists on any function f : Y → R with

codomain R.

Proof: Given a function from a set Y to the k-algebra R, f : Y → R, consider E = R+[Y ],

the positively graded part of the polynomial ring on Y so that R acts on E by multiplication.

The function f induces a morphism of R-algebras

θ : R+[Y ] −→ R

given by θ (y) = f (y).

Let (A, R,δ) be any crossed module. We suppose given ω : Y → A such that δω= f . Let

P be the ideal of R+[Y ] generated by all elements of the form

P = {pq− θ (p)q : p, q ∈ R+[Y ]}.
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One readily sees that θ (P) = 0. If we put C = E/P, we then have the natural commutative

diagram

E Θ //

θ

��

E/P

∂

~~
R

Here Θ is the canonical quotient map of algebras. We now show that the Peiffer condition

can be satisfied as follows;

For all y1 + P, y2 + P ∈ C ,

∂ (y1 + P) · (y2 + P) = θ y1(y2 + P)

= θ y1 y2 + P

≡ y1 y2 + P mod P

= (y1 + P)(y2 + P).

There exists a unique morphism φ : C → A given by φ(y + P) = w(y) such that δφ = ∂ , i.e.

Y ν // C

∃!φ

��

∂ // R

Y ω
// A

δ
// R

Hence (C( f ), R,∂ ) is the required free crossed module R-module on f . 2

Remark 1.4.3 Later on, P will be denoted by P1 and will be called the first order Peiffer

ideal, as our aim is to identify higher order versions of the Peiffer elements.

1.5 RELATIONS BETWEEN FREE CROSSED MODULES AND KOSZUL COM-

PLEXES
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1.5.1 DEFINITION

Let M be an k-module and let ϕ : M → k be a homomorphism of k-modules. We define K(ϕ)

by setting Kp(ϕ) = Λp(M), the pth exterior power of M , for p ≥ 0, Kp(ϕ) = 0 for p < 0. We

have the differential :

dp : Λp(M) −→ Λp−1(M)

given by the formula

dp(u1 ∧ . . .∧ up) =
p
∑

j=1

(−1) j−1ϕ(u j)u1 ∧ . . .∧ u j−1 ∧ u j+1 ∧ · · · ∧ up.

A simple calculation shows that dp−1dp = 0 for all p, and therefore K(ϕ) is a complex of

k-modules.

Definition 1.5.1 The complex K(ϕ) described above is called the Koszul complex of the homo-

morphism ϕ : M → k. If x denotes a sequence of elements x1, . . . , xn of the ring k and if F is a

free module of rank n with basis e1, . . . , en, then the Koszul complex K(ϕ) of the homomorphism

ϕ : F → k for which ϕ(ei) = x i , 1≤ i ≤ n , is also denoted by K(x).

If e1, . . . , en constitute a basis of the module F , then a basis of the module Λp(F) consists

of elements of the form ei1 ∧ . . . ∧ eip for all the sequences of positive integers subject to

1≤ i1 < . . .< ip ≤ n. Thus the Koszul complex K(x) is a finite complex of free modules.

We state relations between free crossed module and the Koszul complex from Porter [36]

that were already hinted at in Lichtenbaum and Schlessinger [31].

Proposition 1.5.2 If (C,R, ∂ ) is a free crossed module R-module on a function f : Y → R, with

Y = {y1, . . . yn}, then there is a natural isomorphism

C ∼= Rn/Imd,

where d : Λ2Rn→ Rn is the Koszul differential.

Proof: See T.Porter [36]. 2
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CHAPTER 2

HIGHER ORDER PEIFFER ELEMENTS

INTRODUCTION

In this chapter we show the following results:

Let E be a simplicial commutative algebra with Moore complex NE and for n> 1, let Dn

be the ideal generated by the degenerate elements in dimension n. If En = Dn, then

∂n(N En) = ∂n(In) for all n> 1,

where In is an ideal in En generated by a fairly small explicitly given set of elements.

If n = 2, 3 or 4, then the image of the Moore complex of the simplicial algebra E can be

given in the form

∂n(N En) =
∑

I ,J

KI KJ

where ; 6= I , J ⊂ [n− 1] = {0,1, . . . , n− 1} with I ∪ J = [n− 1], and where

KI =
⋂

i∈I

Kerdi and KJ =
⋂

j∈J

Kerd j .

In general for n> 4, we can only prove

∑

I ,J

KI KJ ⊆ ∂n(N En)

and suspect the opposite inclusion holds as well.
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2.1 DEFINITION AND NOTATION

We firstly recall the following notation and terminology from P.Carrasco and A.M.Cegarra

[13].

For the ordered set [n] = {0 < 1 < . . . < n}, let αn
i : [n + 1] → [n] be the increasing

surjective map given by

αn
i ( j) =







j if j ≤ i

j − 1 if j > i.

Let S(n, n− r) be the set of all monotone increasing surjective maps from [n] to [n− r]. This

can be generated from the various αn
i by composition. The composition of these generating

maps is subject to the following rule

α jαi = αi−1α j , j < i.

This implies that every element α ∈ S(n, n− r) has a unique expression as

α= αi1 ◦αi2 ◦ . . . ◦αir

with 0≤ i1 < i2 < . . .< ir ≤ n− 1, where the indices ik are the elements of [n] such that

{i1, . . . , ir}= {i : α(i) = α(i + 1)}.

We thus can identify S(n, n− r) with the set

{(ir , . . . , i1) : 0≤ i1 < i2 < . . .< ir ≤ n− 1}.

In particular, the single element of S(n, n), defined by the identity map on [n], corresponds to

the empty 0-tuple ( ) denoted by ;n. Similarly the only element of S(n, 0) is (n−1, n−2, . . . , 0).

For all n≥ 0, let

S(n) =
⋃

0≤r≤n
S(n, n− r).

We say that α= (ir , . . . , i1)< β = ( js, . . . , j1) in S(n)

if i1 = j1, . . . , ik = jk but ik+1 > jk+1 (k ≥ 0) or

if i1 = j1, . . . , ir = jr and r < s.

This makes S(n) an ordered set. For instance, the order in S(2) and in S(3) are respectively:

S(2) = {;2 < (1)< (0)< (1,0)};

S(3) = {;3 < (2)< (1)< (2,1)< (0)< (2,0)< (1,0)< (2,1, 0)}.

We also define α∩ β as the set of indices which belong to both of them.
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2.2 THE SEMIDIRECT DECOMPOSITION OF A SIMPLICIAL ALGEBRA

The fundamental idea behind this can be found in Conduché [14].A detailed investigation

of it for the case of a simplicial group is given in Carrasco and Cegarra [13]. The algebra

case of that structure is also done in Carrasco’s thesis [12].

Definition 2.2.1 Let M be a k-algebra with M1, M2, . . . , Mn, n≥ 2, subalgebras of M.

The k-algebra M is said to be an n-semidirect product of M1, M2, . . . , Mn if

(i) M1 + . . .+Ms is an ideal of M for 1≤ s ≤ n,

(ii) M1 + . . .+Mn = M ,

(iii) (M1 + . . .+Ms)∩Mt = 0 for 1≤ s < t ≤ n.

We shall denote this M = M1 o M2 o . . .o Mn. Any element can be uniquely expressed

as m1 + . . .+mn with mi ∈ Mi . For this, see P.Carrasco and A.M.Cegarra (1991) [13].

In the following, we see how the n-semidirect product algebras occur in a simplicial

algebra.

Lemma 2.2.2 Let E be a simplicial algebra. Then En can be decomposed as a semidirect prod-

uct:

En
∼= Kerdn

n o sn−1
n−1(En−1).

Proof: The isomorphism can be defined as follows:

θ : En −→ Kerdn
n o sn−1

n−1(En−1)

e 7−→ (e− sn−1dne, sn−1dne).

2

Since we have the isomorphism between En and Kerdn o sn−1En−1, we can repeat this

process as often as necessary to get each of the En as a multiple semidirect product of de-

generacies of terms in the Moore complex. In fact, let K be the simplicial algebra defined

by

Kn = Kerdn+1
n+1 , dn

i = dn+1
i |Kerdn+1

n+1
and sn

i = sn+1
i |Kerdn+1

n+1
.

Since dn−1
n−1 dn

i = dn−1
i dn

n , for all i ≤ n− 1, Kerdn
n is mapped to Kerdn−1

n−1 by all the morphisms

dn
i , i ≤ n− 1. Further, as dn+1

n+1 sn
i = sn−1

i dn
n , for i ≤ n− 2, we have that sn+1

i maps Kerdn
n to
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Kerdn+1
n+1 . Applying lemma 2.2.2 above, to En−1 and to Kn−1, gives

En
∼= Kerdn o sn−1En−1

= Kerdn o sn−1(Kerdn−1 o sn−2En−2)

= Kn−1 o (sn−1Kerdn−1 o sn−1sn−2En−2).

Since K is a simplicial algebra, we have got the following

Kerdn = Kn−1
∼= KerdK

n−1 o sn−2Kn−2

= (Kerdn−1 ∩ Kerdn)o sn−2Kerdn−1

and this enables us to write

En = ((Kerdn
n−1 ∩ Kerdn

n )o sn−2(Kerdn−1
n−1 ))o (sn−1(Kerdn−1

n−1 )o sn−1sn−2(En−2)).

We can thus decompose En as follows:

Proposition 2.2.3 If E is a simplicial algebra, then for any n≥ 0

En
∼= (. . . (N En o sn−1N En−1)o . . .o sn−2 . . . s0N E1)o

(. . . (sn−2N En−1 o sn−1sn−2N En−2)o . . .o sn−1sn−2 . . . s0N E0).

The bracketting and the order of terms in this multiple semidirect product are generated

by the sequence:

E1
∼= N E1 o s0N E0

E2
∼= (N E2 o s1N E1)o (s0N E1 o s1s0N E0)

E3
∼= ((N E3 o s2N E2)o (s1N E2 o s2s1N E1))o

((s0N E2 o s2s0N E1)o (s1s0N E1 o s2s1s0N E0)).

and
E4
∼= (((N E4 o s3N E3)o (s2N E3 o s3s2N E2))o

((s1N E3 o s3s1N E2)o (s2s1N E2 o s3s2s1N E1)))o

s0(decomposition of E3).

Note that the term corresponding toα= (ir , . . . , i1) ∈ S(n) is sα(N En−#α) = sir ...i1(N En−#α) =

sir ...si1(N En−#α), where #α= r. Hence any element x ∈ En can be written in the form

x = y +
∑

α∈S(n)

sα(xα) with y ∈ N En and xα ∈ N En−#α.
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2.3 HIGHER ORDER PEIFFER ELEMENTS

The following lemma is noted by P.Carrasco [12].

Lemma 2.3.1 For a simplicial algebra E, there is a bijection between

N En =
n−1
⋂

i=0
Kerdi and N E

(r)
n =

⋂

i 6=r
Kerdi

in En.

Proof: The bijection is given as follows;

ϕ : N En −→ N E
(r)
n

e 7−→ ϕ(e) = e−
n−r−1
∑

k=0
(−1)k+1sr+kdne.

It is easy to check that this is a bijection. 2

Note that ϕ is not a homomorphism, but it is additive.

In particular we have:

Lemma 2.3.2 If E is a simplicial algebra, then there is a bijection

ϕ′ : Kerd0 ∩ . . .∩ Kerdn−1 −→ Kerd1 ∩ . . .∩ Kerdn.

Proof: The bijection ϕ′ can be defined by

ϕ′(x) = x +
n−1
∑

i=0

(−1)n−isn−i−1dn(x).

From a direct calculation, ϕ′ is injective and surjective. 2

Lemma 2.3.3 Given a simplicial algebra E, then we have the following

dn(N En) = dr(N E
(r)
n ).

Proof: It is easy to see that, for all elements of the form

e−
n−r−1
∑

k=0

(−1)k+1sr+kdne
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of N E
(r)
n with e ∈ N En, one gets

dr

�

e−
n−r−1
∑

k=0

(−1)k+1sr+kdne

�

= dne

as required, but by the proof of lemma 2.3.1 all elements of N E
(r)
n have this form. 2

Proposition 2.3.4 Let E be a simplicial algebra, then for n≥ 2 and I , J ⊆ [n−1] with I ∪ J =

[n− 1]

(
⋂

i∈I

Kerdi)(
⋂

j∈J

Kerd j) ⊆ ∂nN En.

Proof: For any J ⊂ [n − 1], J 6= ;, let r be the smallest element of J . If r = 0, then

replace J by I and restart and if 0 ∈ I∩J , then redefine r to be the smallest nonzero element

of J . Otherwise continue. Let e0 ∈
⋂

j∈J
Kerd j and e1 ∈

⋂

i∈I
Kerdi , one obtains

di(sr−1e0sr e1) = 0 for i 6= r

and hence sr−1e0sr e1 ∈ N E
(r)
n . It follows that

e0e1 = dr(sr−1e0sr e1) ∈ dr(N E
(r)
n ) = dnN En by the previous lemma,

and this implies

(
⋂

i∈I

Kerdi)(
⋂

j∈J

Kerd j) ⊆ ∂nN En.

2

We will denote

KI =
⋂

i∈I
Kerdi and KJ =

⋂

j∈J
Kerd j .

Proposition 2.3.4 trivially implies: let E be a simplicial algebra with Moore complex NE, then

∑

I ,J

KI KJ ⊆ ∂nN En

for ; 6=I , J ⊂ [n− 1] and I ∪ J = [n− 1].
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Example 2.3.5 Let us illustrate this inclusion for n= 2. We suppose that x , y ∈ N E1 = Kerd0

so that (s0d1 y − y) ∈ Kerd1. Note that

x(s0d1 y − y) = d2(s1 x(s0 y − s1 y))

which corresponds to a first order Peiffer element. These elements vanish for all x , y if and only

if ∂1 : N E1→ N E0 is a crossed module. Also Kerd0Kerd1 ⊆ ∂2(N E2).

Note that: ∂n(N En) is an ideal in En−1. In fact, let x ∈ N En and z ∈ En−1. Define w =

sn−1(z)x . Then di(w) = 0 for i ≤ n−1, hence w ∈ N En and dn(w) = zdn(x) and so z∂n(x) ∈

∂n(N En) as required.

Corollary 2.3.6 Let E be a simplicial algebra and let E′ be the corresponding truncated simpli-

cial algebra of order n, so we have the canonical morphism:

E : . . .

��

// En

��

//
: // En−1

��

:
oo
oo

: //
//

En−2

��

:
oo
oo

: //
//

. . . ////

:
oo
oo

E0oo

��
E′ : . . . // E′n

// En−1/∂nN En
: //

//

En−2:
oo
oo

: //
//

. . .
:

oo
oo

//// E0oo

Then E′ satisfies the following property:

For all nonempty sets of indices ( I 6= J) I , J ⊂ [n− 1] with I ∪ J = [n− 1],

(
⋂

j∈J

Kerdn−1
j )(

⋂

i∈I

Kerdn−1
i ) = 0.

Proof: Since ∂nN E′n = 0, this follows from proposition 2.3.4. 2

In the following we will define an ideal In. First of all we recall from P.Carrasco [12] the

construction of a useful family of k-linear morphisms. We define a set P(n) consisting of pairs

of elements (α,β) from S(n) with α ∩ β = ;, where α = (ir , . . . , i1),β = ( js, ..., j1) ∈ S(n).

The k-linear morphisms that we will need,

{Cα,β : N En−#α ⊗ N En−#β −→ N En : (α,β) ∈ P(n), n≥ 0}
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are given as composites by the diagrams

N En−#α ⊗ N En−#β

sα ⊗ sβ

��

Cα,β // N En

En ⊗ En
µ // En

p

OO

where

sα = sir . . . si1 : N En−#α −→ En , sβ = s js . . . s j1 : N En−#β −→ En,

p : En→ N En is defined by composite projections p = pn−1 . . . p0, where

p j = 1− s jd j with j = 0, 1, . . . n− 1

and we denote the multiplication by µ : En ⊗ En→ En. Thus

Cα,β(xα ⊗ yβ) = pµ(sα ⊗ sβ)(xα ⊗ yβ)

= p(sα(xα)sβ(yβ))

= (1− sn−1dn−1) . . . (1− s0d0)(sα(xα)sβ(yβ)).

We now define the ideal In to be that generated by elements of the form

Cα,β(xα ⊗ yβ)

where xα ∈ N En−#α and yβ ∈ N En−#β .

We examine this ideal for n= 2 and n= 3 to see what it looks like.

Example 2.3.7 For n= 2, suppose α= (1), β = (0) and x , y ∈ N E1 = Kerd0. It follows that

C(1)(0)(x ⊗ y) = p1p0(s1 xs0 y)

= s1 xs0 y − s1 xs1 y

= s1 x(s0 y − s1 y)

which is a generator element of the ideal I2.

For n= 3, the linear morphisms are the following

C(1,0)(2), C(2,0)(1), C(2,1)(0),

C(2)(0), C(2)(1), C(1)(0).
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For all x ∈ N E1, y ∈ N E2, the corresponding generators of I3 are:

C(1,0)(2)(x ⊗ y) = (s1s0 x − s2s0 x)s2 y,

C(2,0)(1)(x ⊗ y) = (s2s0 x − s2s1 x)(s1 y − s2 y),

C(2,1)(0)(x ⊗ y) = s2s1 x(s0 y − s1 y + s2 y);

whilst for all x , y ∈ N E2,

C(1)(0)(x ⊗ y) = s1 x(s0 y − s1 y) + s2(x y),

C(2)(0)(x ⊗ y) = (s2 x)(s0 y),

C(2)(1)(x ⊗ y) = s2 x(s1 y − s2 y).

In the following we analyse various types of elements in In and show that sums of them

give elements that we want in giving an alternative description of ∂nN En in certain cases.

Lemma 2.3.8 Given xα ∈ N En−#α, yβ ∈ N En−#β with α = (ir , . . . , i1), β = ( js, . . . , j1) ∈

S(n). If α∩ β = ; with α < β and u= sα(xα)sβ(yβ), then

(i) if k ≤ j1, then pk(u) = u,

(ii) if k > js + 1 or k > ir + 1, then pk(u) = u,

(iii) if k ∈ {i1, . . . , ir , ir + 1} and k = jl + 1 for some l, then

pk(u) = sα(xα)sβ(yβ)− sk(zk),

for some zk ∈ En−1,

(iv) if k ∈ { j1, . . . , js, js + 1} and k = im + 1 for some m, then

pk(u) = sα(xα)sβ(yβ)− sk(zk),

where zk ∈ En−1 and 0≤ k ≤ n− 1.

Proof: Assuming α < β and α∩ β = ; which implies j1 < i1. In the range 0≤ k ≤ j1,

pk(u) = sα(xα)sβ(yβ)− (skdksαxα)(skdksβ yβ)

= sα(xα)sβ(yβ)− (sksir−1 . . . si1−1dk xα)(skdksβ yβ)

= sα(xα)sβ(yβ) since dk(xα) = 0.
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Similarly if k > js + 1, then

pk(u) = sα(xα)sβ(yβ)− (skdksαxα)(skdksβ yβ)

= sα(xα)sβ(yβ)− (skdksαxα)(sks js . . . s j1 dk−s yβ)

= sα(xα)sβ(yβ) since dk−s(yβ) = 0.

Clearly the same sort of argument works if k > ir + 1.

If k ∈ {i1, . . . , ir , ir + 1} and k = jl + 1 for some l, then

pk(u) = sα(xα)sβ(yβ)− sk[dk(sα(xα)sβ(yβ))]

= sα(xα)sβ(yβ)− sk(zk)

where zk = sα′(xα′)sβ ′(yβ ′) ∈ En−1 for new strings α′, β ′ as is clear. The proof of (iv) is

same so we will leave it out. 2

Lemma 2.3.9 If α∩ β = ; and α < β , then

pn−1 . . . p0(sα(xα)sβ(yβ)) = sα(xα)sβ(yβ)−
n−1
∑

k=1

sk(zk)

where zk ∈ En−1.

Proof: We prove this by using the induction hypothesis on n. Write u = sα(xα)sβ(yβ).

For n = 1, it is clear to see that the equality is verified. We suppose that it is true for n− 2.

It then follows that

pn−1 . . . p0(u) = pn−1(u−
n−2
∑

k=1

sk(zk))

= pn−1(u)− pn−1(
n−2
∑

k=1

sk(zk))

as pn−1 is a linear map. Next look at pn−1(u) = u− sn−1(dn−1u
︸ ︷︷ ︸

z′

) = u− sn−1(z′) and

pn−1(
n−2
∑

k=1

sk(zk)) =
n−2
∑

k=1

sk(zk)− sn−1(
n−2
∑

k=1

dn−1sk(zk)

︸ ︷︷ ︸

z′′

)

=
n−2
∑

k=1

sk(zk)− sn−1(z′′).
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Thus

pn−1 . . . p0(u) = u−
n−2
∑

k=1

sk(zk) + sn−1(z
′′ − z′
︸ ︷︷ ︸

zn−1

)

= u−
n−2
∑

k=1

sk(zk) + sn−1(zn−1)

= u−
n−1
∑

k=1

sk(zk).

as required. 2

Note that: For x , y ∈ N En−1, it is easy to see that

pn−1 . . . p0(sn−1(x)sn−2(y)) = sn−1(x)(sn−2 y − sn−1 y)

and taking the image of this element by dn gives

dn[sn−1(x)(sn−2 y − sn−1 y)] = x(sn−2dn−1 y − y)

which gives a Peiffer type element of order n.

Lemma 2.3.10 Let xα ∈ N En−#α, yβ ∈ N En−#β with α,β ∈ S(n), then

sα(xα)sβ(yβ) = sα∩β(zα∩β)

where zα∩β has the form (sα′ xα)(sβ ′ yβ) and α′ ∩ β ′ = ;.

Proof: If α ∩ β = ;, then this is trivially true. Assume #(α ∩ β) = t, with t ∈ N. Take

α= (ir , . . . , i1) and β = ( js, . . . , j1) with α∩ β = (kt , . . . , k1),

sα(xα) = sir . . . skt
. . . si1(xα) and sβ(yβ) = s js . . . skt

. . . s j1(yβ).

Using repeatedly the simplicial axiom sesd = sdse−1 for d < e until obtaining that skt
. . . sk1

is

at beginning of the string, one gets the following

sα(xα) = skt ...k1
(sα′ xα) and sβ(yβ) = skt ...k1

(sβ ′ yβ).

Multiplying these expressions together gives

sα(xα)sβ(yβ) = skt
. . . sk1

(sα′ xα)skt
. . . sk1

(sβ ′ yβ)

= skt ...k1
((sα′ xα)(sβ ′ yβ))

= sα∩β(zα∩β),
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where zα∩β = (sα′ xα)(sβ ′ yβ) ∈ En−#(α∩β) and where α\α ∩ β = α′, β\α ∩ β = β ′. Hence

α′ ∩ β ′ = ;. Moreover α′ < α and β ′ < β as #α′ < #α and #β ′ < #β . 2

Proposition 2.3.11 Let E be a simplicial algebra and n> 0, and Dn the ideal in En generated

by degenerate elements. We suppose En = Dn, and let In be the ideal generated by elements of

the form

Cα,β(xα ⊗ yβ) with (α,β) ∈ P(n)

where xα ∈ N En−#α, yβ ∈ N En−#β . Then

∂n(N En) = ∂n(In).

Proof: From proposition 2.2.3, En is isomorphic to

N En o sn−1N En−1 o sn−2N En−1 o . . .o sn−1sn−2 . . . s0N E0,

here N En =
n−1
⋂

i=0

Kerdi and N E0 = E0. Hence any element x in En can be written in the

following form

x = en + sn−1(xn−1) + sn−2(x
′
n−1) + sn−1sn−2(xn−2) + . . .+ sn−1sn−2 . . . s0(x0),

with en ∈ N En, xn−1, x ′n−1 ∈ N En−1, xn−2 ∈ N En−2, x0 ∈ N E0 etc.

We start by comparing In with N En. We show N En = In. It is enough to prove that,

equivalently, any element in En/In can be written

sn−1(xn−1) + sn−2(x
′
n−1) + sn−1sn−2(xn−2) + . . .+ sn−1sn−2 . . . s0(x0) + In

which implies, for any b ∈ En,

b+ In = sn−1(xn−1) + sn−2(x
′
n−1) + . . .+ sn−1sn−2 . . . s0(x0) + In.

for some xn−1 ∈ N En−1 etc.

If b ∈ En, it is a sum of products of degeneracies so first of all assume it to be a product

of degeneracies and that will suffice for the general case.

If b is itself a degenerate element, it is obvious that it is in some semidirect factor

sα(En−#α). Assume therefore that provided an element b can be written as a product of
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k − 1 degeneracies it has the desired form mod In, now for an element b which needs k

degenerate elements

b = sβ(yβ)b
′ with yβ ∈ N En−#β

where b′ needs fewer than k and so

b+ In = sβ(yβ)(b′ + In)

= sβ(yβ)(sn−1(xn−1) + sn−2(x ′n−1) + . . .+ sn−1sn−2 . . . s0(x0) + In)

=
∑

α∈S(n)

sβ(yβ)sα(xα) + In.

Next we ignore this summation and just look at the product

sα(xα)sβ(yβ) (∗).

We check this product case by case as follows:

If α ∩ β = ;, then there exists by lemma 2.3.8 and 2.3.9, an element sα(xα)sβ(yβ) −
n−1
∑

k=1

sk(zk) in In with zk ∈ En−1 and k ∈ α so that

sα(xα)sβ(yβ)≡
n−1
∑

k=1

sk(zk) mod In.

If α∩ β 6= ;, then one gets, from lemma 2.3.10, the following

sα(xα)sβ(yβ) = sα∩β(zα∩β)

where zα∩β = (sα′ xα)(sβ ′ yβ) ∈ En−#(α∩β), with t ∈ N. Since α′ ∩ β ′ = ;, we can use lemma

2.3.9 to form an equality

sα′(xα)sβ ′(yβ)≡
n−1
∑

k′=0

sk′(zk′) mod In

where zk′ ∈ En−1. It then follows that

sα∩β(zα∩β) = sα∩β((sα′ xα)(sβ ′ yβ))

≡
n−1
∑

k′=0

sα∩β sk′(zk′) mod In.

Thus we have shown that every product which can be formed in the required form are

in In. Therefore ∂n(In) = ∂n(N En). 2
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2.4 THE CASES n= 2 AND n= 3

2.4.1 CASE n= 2

We know that any element e2 of E2 can be expressed in the form

e2 = b+ s1 y + s0 x + s0u

with b ∈ N E2, x , y ∈ N E1 and u ∈ s0E0. We suppose D2 = E2. For n = 1, we take α =

(1), β = (0) and x , y ∈ N E1 =Kerd0. By example 2.3.7, the ideal I2 is generated by

elements of the form

C(1)(0)(x ⊗ y) = s1 x(s0 y − s1 y).

The image of I2 by ∂2 is known to be Kerd0Kerd1 by direct calculation. Indeed,

d2[C(1)(0)(x ⊗ y)] = d2[s1 x(s0 y − s1 y)]

= x(s0d1 y − y)

where x ∈Kerd0 and (s0d1 y − y) ∈Kerd1 and all elements of Kerd1 have this form by lemma

2.3.1. Thus ∂2(I2) ⊆ Kerd0Kerd1 = K{0}K{1} = KI KJ . Using similar calculations to those in

example 2.3.5, it is easy to obtain the converse of the equality and so ∂2(I2) =Kerd0Kerd1.

We can summarise this in the following table

α β I , J

(1) (0) {0} {1}

Let us illustrate the product (∗) of proposition 2.3.11. For x ′, y ′ ∈ N E1 and v ∈ s0E0, the

first case is

(s1(y) + s0(x) + s0(u))s0(v) = s1(y)s0(v) + s0(x v) + s0(uv)

= s1(yv) + s0(x v) + s0(uv)

since
s1(yv) = s1(y)s1(v)

= s1(y)s1(s0(v′)) with v′ ∈ E0

= s1(y)s0s0(v′)

= s1(y)s0(v)

It is also easily seen that yv and x v ∈ N E1 whilst uv ∈ s0E0.
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The second case is

(s1(y) + s0(x) + s0(u))s0(x ′) = s1(y)s0(x ′) + s0(x x ′) + s0(ux ′)

≡ s1(y x ′) + s0(x x ′) + s0(ux ′),

since s1(y)(s0(x ′)− s1(x ′))≡ 0 mod I2.

For the third case, we need the identity

s0(x)(s1(y)− s0(y))≡ 0 mod I2

and so s0(x)s1(y)≡ s0(x)s0(y). Hence we have

(s0(y) + s1(x) + s1(u))s1(y ′) = s0(y)s1(y ′) + s1(x y ′) + s1(uy ′)

≡ s0(y y ′) + s1(x y ′) + s1(uy ′)

Hence ∂2(I2) = ∂2(N E2) as claimed.

2.4.2 CASE n= 3

This subsection provides analogues in dimension 3 of the Peiffer elements.

Proposition 2.4.1

∂3(N E3) =
∑

I ,J

KI KJ + K{0,1}K{0,2} + K{0,2}K{1,2} + K{0,1}K{1,2}

where I ∪ J = [2], I ∩ J = ; and

K{0,1}K{0,2} = (Kerd0 ∩ Kerd1)(Kerd0 ∩ Kerd2)

K{0,2}K{1,2} = (Kerd0 ∩ Kerd2)(Kerd1 ∩ Kerd2)

K{0,1}K{1,2} = (Kerd0 ∩ Kerd1)(Kerd1 ∩ Kerd2).

Proof: By example 2.3.7 and proposition 2.3.11, we know the generator elements of

the ideal I3 and ∂3(I3) = ∂3(N E3). The image of all the listed generator elements of the ideal

I3 can be given in the following table.
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α β I , J

1 (1,0) (2) {2} {0,1}

2 (2,0) (1) {1} {0,2}

3 (2,1) (0) {0} {1,2}

4 (2) (1) {0,1} {0,2}

5 (2) (0) {0,1} {1,2}+{0,1} {0,2}

6 (1) (0) {0,2} {1,2}+{0,1} {1,2}+{0,1} {0,2}

The explanation of this table is the following:

Row 1.

Firstly we look at the case of α= (1, 0) and β = (2). For x ∈ N E1 and y ∈ N E2,

d3[C(1,0)(2)(x ⊗ y)] = d3[(s1s0 x − s2s0 x)s2 y]

= (s1s0d1 x − s0 x)y

and so

d3[C(1,0)(2)(x ⊗ y)] = (s1s0d1 x − s0 x)y ∈ Kerd2(Kerd0 ∩ Kerd1).

We have denoted Kerd2(Kerd0∩Kerd1) by K{2}K{0,1} where I = {2} and J = {0,1}.

Row 2. For α= (2,0), β = (1) with x ∈ N E1, y ∈ N E2,

d3[C(2,0)(1)(x ⊗ y)] = d3[(s2s0 x − s2s1 x)(s1 y − s2 y)]

= (s0 x − s1 x)(s1d2 y − y)

and so

d3[C(2,0)(1)(x ⊗ y)] ∈ Kerd1(Kerd0 ∩ Kerd2) = K{1}K{0,2}.

Row 3. For α= (2, 1), β = (0) with x ∈ N E1, y ∈ N E2,

d3[C(2,1)(0)(x ⊗ y)] = d3[s2s1 x(s0 y − s1 y + s2 y)]

= s1 x(s0d2 y − s1d2 y + y)

and hence

d3[C(2,1)(0)(x ⊗ y)] ∈ Kerd0(Kerd1 ∩ Kerd2) = K{0}K{1,2}.
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Row 4. For α= (2), β = (1) with x , y ∈ N E2 = Kerd0∩Kerd1,

d3[C(2)(1)(x ⊗ y)] = d3[s2 xs1 y − s2 xs2 y]

= x(s1d2 y − y).

It follows that

d3[C(2)(1)(x ⊗ y)] ∈ (Kerd0 ∩ Kerd1)(Kerd0 ∩ Kerd2)

= K{0,1}K{0,2}.

Row 5. For α= (2), β = (0) with x , y ∈ N E2 =Kerd0∩Kerd1,

d3[C(2)(0)(x ⊗ y)] = d3[s2 xs0 y]

= xs0d2 y.

We can assume, for x , y ∈ N E2,

x ∈ Kerd0 ∩ Kerd1 and y + s0d2 y − s1d2 y ∈ Kerd1 ∩ Kerd2

and, multiplying them together,

x(y + s0d2 y − s1d2 y) = x y + xs0d2 y − xs1d2 y

= x(y − s1d2 y) + xs0d2 y

= d3[C(2)(1)(x ⊗ y)] + d3[C(2)(0)(x ⊗ y)]

and so
d3[C(2)(0)(x ⊗ y)] ∈ K{0,1}K{1,2} + d3[C(2)(1)(x ⊗ y)]

⊆ K{0,1}K{1,2} + K{0,1}K{0,2}.

Row 6. For α= (1), β = (0) and x , y ∈ N E2 =Kerd0∩Kerd1,

d3[C(1)(0)(x ⊗ y)] = d3[s1 xs0 y − s1 xs1 y + s2 xs2 y]

= s1d2 xs0d2 y − s1d2 xs1d2 y + x y.

We can take the following elements

(s0d2 y − s1d2 y + y) ∈ Kerd1 ∩ Kerd2 and (s1d2 x − x) ∈ Kerd0 ∩ Kerd2.
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When we multiply them together, we get

(s0d2 y − s1d2 y + y)(s1d2 x − x) = [s0d2 ys1d2 x − s1d2 ys1d2 x + y x]

−[xs0d2 y] + [x(s1d2 y − y)]

+[y(s1d2 x − x)]

= d3[C(1)(0)(x ⊗ y)]− d3[C(2)(0)(x ⊗ y)]+

d3[C(2)(1)(x ⊗ y) + C(2)(1)(y ⊗ x)]

and hence

d3[C(1)(0)(x ⊗ y)] ∈ K{0,2}K{1,2} + K{0,1}K{1,2} + K{0,1}K{0,2}.

So we have shown

∂3(N E3) ⊆
∑

I ,J

KI KJ + K{0,1}K{0,2} + K{0,2}K{1,2} + K{0,1}K{1,2}.

The opposite inclusion can be verified by using proposition 2.3.4. Therefore

∂3(N E3) = Kerd2(Kerd0 ∩ Kerd1) + Kerd1(Kerd0 ∩ Kerd2)+

Kerd0(Kerd1 ∩ Kerd2) + (Kerd0 ∩ Kerd1)(Kerd0 ∩ Kerd2)+

(Kerd1 ∩ Kerd2)(Kerd0 ∩ Kerd2) + (Kerd1 ∩ Kerd2)(Kerd0 ∩ Kerd1).

This completes the proof of the proposition. 2

2.5 THE CASE n= 4

Proposition 2.5.1

∂4(N E4) =
∑

I ,J

KI KJ

where I ∪ J = [3], I = [3]− {α}, J = [3]− {β} and (α,β) ∈ P(4).

Proof: There is a natural isomorphism

E4
∼= N E4 o s3N E3 o s2N E3 o s3s2N E2 o s1N E3o

s3s1N E2 o s2s1N E2 o s3s2s1N E1 o s0N E3o

s3s0N E2 o s2s0N E2 o s3s2s0N E1o

s1s0N E2 o s3s1s0N E1 o s3s2s1s0N E0.
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We firstly see what the generator elements of the ideal I4 look like in the following: For

n= 4, one gets

S(4) = {;4 < (3)< (2)< (3, 2)< (1)< (3,1)< (2, 1)< (3,2, 1)< (0)<

(3,0)< (2, 0)< (3,2, 0)< (1, 0)< (3,1, 0)< (3,2, 1,0)}.

The linear morphisms are the following:

C(3,2,1)(0) C(3,2,0)(1) C(3,1,0)(2) C(2,1,0)(3)

C(3,2)(1,0) C(3,1)(2,0) C(3,0)(2,1) C(3,2)(1)

C(3,2)(0) C(3,1)(2) C(3,1)(0) C(3,0)(2)

C(3,0)(1) C(2,1)(3) C(2,1)(0) C(2,0)(3)

C(2,0)(1) C(1,0)(3) C(1,0)(2) C(3)(2)

C(3)(1) C(3)(0) C(2)(1) C(2)(0)

C(1)(0).
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For x1, y1 ∈ N E1, x2, y2 ∈ N E2 and x3, y3 ∈ N E3, the generator elements of the ideal I4

are

1) C(3,2,1)(0)(x1 ⊗ y3) = s3s2s1 x1(s0 y3 − s1 y3 + s2 y3 − s3 y3)

2) C(3,2,0)(1)(x1 ⊗ y3) = (s3s2s0 x1 − s1s2s1 x1)(s1 y3 − s2 y3 + s3 y3)

3) C(3,1,0)(2)(x1 ⊗ y3) = (s3s1s0 x1 − s2s2s0 x1)(s2 y3 − s3 y3)

4) C(2,1,0)(3)(x1 ⊗ y3) = (s2s1s0 x1 − s3s1s0 x1)s3 y3

5) C(3,2)(1,0)(x2 ⊗ y2) = (s1s0 x2 − s2s0 x2 + s3s0 x2)s3s2 y2

6) C(3,1)(2,0)(x2 ⊗ y2) = (s3s1 x2 − s3s0 x2 + s2s0 x2 − s1s1 x2)

(s3s1 y2 − s3s2 y2)

7) C(3,0)(2,1)(x2 ⊗ y2) = (s2s1 x2 − s3s1 x2)(s3s0 y2 − s1s2 y2 + s2s2 y2)

8) C(3,2)(1)(x2 ⊗ y3) = s3s2 x2(s1 y3 − s2 y3 + s3 y3)

9) C(3,2)(0)(x2 ⊗ y3) = s3s2 x2s0 y3

10) C(3,1)(2)(x2 ⊗ y3) = (s2 y3 − s3 y3)(s3s1 x2 − s2s2 x2)

11) C(3,1)(0)(x2 ⊗ y3) = s3s1 x2(s0 y3 − s1 y3) + s3s2 x2(s2 y3 − s3 y3)

12) C(3,0)(2)(x2 ⊗ y3) = s3s0 x2(s2 y3 − s3 y3)

13) C(3,0)(1)(x2 ⊗ y3) = s1 y3(s3s0 x2 − s1s2 x2) + s2s2 x2(s2 y3 − s3 y3)

14) C(2,1)(3)(x2 ⊗ y3) = (s2s1 x2 − s3s1 x2)s3 y3

15) C(2,1)(0)(x2 ⊗ y3) = s2s1 x2(s0 y3 − s1 y3 + s2 y3) + s3s1 x2s3 y3

16) C(2,0)(3)(x2 ⊗ y3) = (s2s0 x2 − s3s0 x2)s3 y3

17) C(2,0)(1)(x2 ⊗ y3) = (s2s0 x2 − s1s1 x2)(s1 y3 − s2 y3)+

(s3s1 x2 − s3s0 x2)s3 y3

18) C(1,0)(3)(x2 ⊗ y3) = s1s0 x2s3 y3

19) C(1,0)(2)(x2 ⊗ y3) = (s1s0 x2 − s2s0 x2)s2 y3 + s3s0 x2s3 y3

20) C(3)(2)(x3 ⊗ y3) = s3 x3(s2 y3 − s3 y3)

21) C(3)(1)(x3 ⊗ y3) = s3 x3s1 y3

22) C(3)(0)(x3 ⊗ y3) = s3 x3s0 y3

23) C(2)(1)(x3 ⊗ y3) = s2 x3(s1 y3 − s2 y3) + s3(x3 y3)

24) C(2)(0)(x3 ⊗ y3) = s2 x3s0 y3

25) C(1)(0)(x3 ⊗ y3) = s1 x3(s0 y3 − s1 y3) + s2(x3 y3)− s3(x3 y3)
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By proposition 2.3.11, we have ∂4(N E4) = ∂4(I4). We take an image by ∂4 of each Cαβ ,

where α,β ∈ P(4). We summarise the image of all generator elements, which are listed

early on, in the subsequent table.

α β I , J

1 (3,2,1) (0) {0}{1,2,3}

2 (3,2,0) (1) {1}{0,2,3}

3 (3,1,0) (2) {2}{0,1,3}

4 (2,1,0) (3) {3}{0,1,2}

5 (3,2) (1,0) {0,1}{2,3}

6 (3,1) (2,0) {0,2}{1,3}

7 (3,0) (2,1) {1,2}{0,3}

8 (3,2) (1) {0,1}{0,2,3}

9 (3,2) (0) {0,1}{1,2,3}+{0,1}{0,2,3}

10 (3,1) (2) {0,2}{0,1,3}

11 (3,1) (0) {0,2}{1,2,3}+{0,2}{0,1,3}+{0,1}{1,2,3}+{0,1}{0,2,3}

12 (3,0) (2) {1,2}{0,1,3}+{0,2}{0,1,3}

13 (3,0) (1) {1,2}{0,2,3}+ {0,1}{0,2,3}+{1,2}{0,1,3}+{0,2}{0,1,3}

14 (2,1) (3) {0,3}{0,1,2}

15 (2,1) (0) {0,3}{1,2,3}+{0,3}{0,1,2}+{0,2}{1,2,3}+{0,2}{0,1,3}

16 (2,0) (3) {1,3}{0,1,2}+{0,3}{0,1,2}

17 (2,0) (1) {1,3}{0,2,3}+{0,3}{0,1,2}+{1,3}{0,1,2}+{1,2}{0,2,3}+

{0,2}{0,1,3}+{1,2}{0,1,3}

18 (1,0) (3) {2,3}{0,1,2}+{1,3}{0,1,2}

19 (1,0) (2) {2,3}{0,1,3}+{1,2}{0,1,3}+{1,3}{0,1,2}+{2,3}{0,1,2}

20 (3) (2) {0,1,2}{0,1,3}

21 (3) (1) {0,1,2}{0,2,3}+{0,1,2}{0,1,3}

22 (3) (0) {0,1,2}{1,2,3}+{0,1,2}{0,2,3}+{0,1,2}{0,1,3}

23 (2) (1) {0,1,3}{0,2,3}+{0,1,2}{1,2,3}+{0,1,2}{0,2,3}+
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{0,1,2}{0,1,3}

24 (2) (0) {0,1,3}{1,2,3}+{0,1,3}{0,2,3}+{0,1,2}{1,2,3}+

{0,1,2}{0,2,3}+{0,1,2}{0,1,3}

25 (1) (0) {0,2,3}{1,2,3}+{0,1,3}{1,2,3}+{0,1,3}{0,2,3}+

{0,1,2}{1,2,3}+{0,1,2}{0,2,3}+{0,1,2}{0,1,3}

We now show how each index in the last column of the above table appears.

From number (1) to (7), we can easily show that for I ∪ J = [3], I ∩ J = ;,

d4[Cα,β(xα ⊗ yβ)] ∈ KI KJ .

The rest of them are the following:

Number: 8
d4[C(3,2)(1)(x2 ⊗ y3)] = s2 x2(s1d3 y3 − s2d3 y3 + y3)

∈ K{0,1}K{0,2,3}.

Number: 9

d4[C(3,2)(0)(x2 ⊗ y3)] = s2 x2s0d3 y3..

Given

s2(x2) ∈ K{0,1} and (s2d3 y3 − s1d3 y3 + s0d3 y3 − y3) ∈ K{1,2,3}.

It then follows that

d4[C(3,2)(0)(x2 ⊗ y3)] ∈ K{0,1}K{1,2,3} + d4[C(3,2)(1)(x2 ⊗ y3)]

⊆ K{0,1}K{1,2,3} + K{0,1}K{0,2,3}.

Number: 10
d4[C(3,1)(2)(x2 ⊗ y3)] = (s1 x2 − s2 x2)(s2d3 y3 − y3)

∈ K{0,2}K{0,1,3}.

Number: 11

d4[C(3,1)(0)(x2 ⊗ y3)] = s1 x2(s0d3 y3 − s1d3 y3) + s2 x2(s2d3 y3 − y3).
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When considering elements

(s2d3 y3 − s1d3 y3 + s0d3 y3 − y3) ∈ K{1,2,3} and (s1 x2 − s2 x2) ∈ K{0,2}

and multiplying them together that implies the following

d4[C(3,1)(0)(x2 ⊗ y3)] ∈ K{0,2}K{1,2,3} − d4[C(3,1)(2)(x2 ⊗ y3)]+

d4[C(3,2)(0)(x2 ⊗ y3)]− d4[C(3,2)(1)(x2 ⊗ y3)]

⊆ K{0,2}K{1,2,3} + K{0,2}K{0,1,3}+

K{0,1}K{1,2,3} + K{0,1}K{0,2,3}.

Number: 12

d4[C(3,0)(2)(x2 ⊗ y3)] = s0 x2(s2d3 y3 − y3).

When given elements

(s2d3 y3 − y3) ∈ K{0,1,3} and (s0 x2 − s1 x2 + s2 x2) ∈ K{1,2},

one can obtain

d4[C(3,0)(2)(x2 ⊗ y3)] ∈ K{1,2}K{0,1,3} + d4[C(3,1)(2)(x2 ⊗ y3)]

⊆ K{1,2}K{0,1,3} + K{0,2}K{0,1,3}.

Number: 13

d4[C(3,0)(1)(x2 ⊗ y3)] = (s0 x2 − s1 x2)s1d3 y3 + s2 x2(s2d3 y3 − y3).

Having elements

(s0 x2 − s1 x2 + s2 x2) ∈ K{1,2} and (s1d3 y3 − s2d3 y3 + y3) ∈ K{0,2,3}.

Then

d4[C(3,0)(1)(x2 ⊗ y3)] ∈ K{1,2}K{0,2,3} − d4[C(3,2)(1)(x2 ⊗ y3)]+

d4[C(3,0)(2)(x2 ⊗ y3)]− d4[C(3,1)(2)(x2 ⊗ y3)]

⊆ K{1,2}K{0,2,3} + K{0,1}K{0,2,3}+

K{1,2}K{0,1,3} + K{0,2}K{0,1,3}.

Number: 14
d4[C(2,1)(3)(x2 ⊗ y3)] = (s2s1d2 x2 − s1 x2)y3

∈ K{0,3}K{0,1,2}.
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Number: 15

d4[C(2,1)(0)(x2 ⊗ y3)] = s2s1d2 x2(s0d3 y3 − s1d3 y3 + s2d3 y3) + s1(x2)y3.

Take elements

(s2d3 y3 − s1d3 y3 + s0d3 y3 − y3) ∈ K{1,2,3} and (s2s1d2 x2 − s1 x2) ∈ K{0,3}.

It follows that

d4[C(2,1)(0)(x2 ⊗ y3)] ∈ K{0,3}K{1,2,3} + d4[C(2,1)(3)(x2 ⊗ y3)]+

d4[C(3,1)(0)(x2 ⊗ y3)] + d4[C(3,1)(2)(x2 ⊗ y3)]

⊆ K{0,3}K{1,2,3} + K{0,3}K{0,1,2}+

K{0,2}K{1,2,3} + K{0,2}K{0,1,3}.

Number: 16

d4[C(2,0)(3)(x2 ⊗ y3)] = (s2s0d2 x2 − s0 x2)y3.

Having elements

y3 ∈ K{0,1,2} and (s2s0d2 x2 − s0 x2 + s1 x2 − s1s1d2 x2) ∈ K{1,3};

then
d4[C(2,0)(3)(x2 ⊗ y3)] ∈ K{1,3}K{0,1,2} − d4[C(2,1)(3)(x2 ⊗ y3)]

⊆ K{1,3}K{0,1,2} + K{0,3}K{0,1,2}.

Number: 17

d4[C(2,0)(1)(x2 ⊗ y3)] = (s2s0d2 x2 − s1s1d2 x2)(s1d3 y3 − s2d3 y3)

+y3(s1 x2 − s0 x2).

Take elements

(s2s0d2 x2 − s0 x2 + s1 x2 − s2s1d2 x2) ∈ K{1,3} and (s1d3 y3 − s2d3 y3 + y3) ∈ K{0,2,3},

d4[C(2,0)(1)(x2 ⊗ y3)] ∈ K{1,3}K{0,2,3} − d4[C(2,1)(3)(x2 ⊗ y3)]+

d4[C(2,0)(3)(x2 ⊗ y3)] + d4[C(3,0)(1)(x2 ⊗ y3)]−

d4[C(3,1)(2)(x2 ⊗ y3)] + d4[C(3,0)(2)(x2 ⊗ y3)]

⊆ K{1,3}K{0,2,3} + K{0,3}K{0,1,2}+

K{1,3}K{0,1,2} + K{1,2}K{0,2,3}+

K{0,2}K{0,1,3} + K{1,2}K{0,1,3}.
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Number: 18

d4[C(1,0)(3)(x2 ⊗ y3)] = s1s0d2(x2)y3.

Take elements

y3 ∈ K{0,1,2} and (s2s0d2 x2 − s0 x2 − s1s0d0 x2) ∈ K{2,3}.

When multiplying them together

d4[C(1,0)(3)(x2 ⊗ y3)] ∈ K{2,3}K{0,1,2} + d4[C(2,0)(3)(x2 ⊗ y3)]

⊆ K{2,3}K{0,1,2} + K{1,3}K{0,1,2}.

Number: 19

d4[C(1,0)(2)(x2 ⊗ y3)] = (s1s0d2 x2 − s2s0d2 x2)s2d3 y3 + s0(x2)y3.

Having elements

(s1s0d2 x2 − s2s0d2 x2 + s0 x2) ∈ K{2,3} and (s2d3 y3 − y3) ∈ K{0,1,3}

one obtains

d4[C(1,0)(2)(x2 ⊗ y3)] ∈ K{2,3}K{0,1,3} − d4[C(3,0)(2)(x2 ⊗ y3)]−

d4[C(2,0)(3)(x2 ⊗ y3)]− d4[C(1,0)(3)(x2 ⊗ y3)]

⊆ K{2,3}K{0,1,3} + K{1,2}K{0,1,3}+

K{1,3}K{0,1,2} + K{2,3}K{0,1,2}.

Number: 20

d4[C(3)(2)(x3 ⊗ y3)] = x3(s2d3 y3 − y3)

∈ (Kerd0 ∩ Kerd1 ∩ Kerd2)(Kerd0 ∩ Kerd1 ∩ Kerd3)

= K{0,1,2}K{0,1,3}.

Number: 21

d4[C(3)(1)(x3 ⊗ y3)] = x3s1d3(y3).

Take elements

x3 ∈ N E3 = K{0,1,2} and (s1d3 y3 − s2d3 y3 + y3) ∈ K{0,2,3}.

When multiplying them together, one gets

d4[C(3)(1)(x3 ⊗ y3)] ∈ d4[C(3)(2)(x3 ⊗ y3)] + K{0,1,2}K{0,2,3}

⊆ K{0,1,2}K{0,2,3} + K{0,1,2}K{0,1,3}.
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Number: 22

d4[C(3)(0)(x3 ⊗ y3)] = x3s0d3(y3).

Considering elements

x3 ∈ K{0,1,2} and (s2d3 y3 − s1d3 y3 + s0d3 y3 − y3) ∈ K{1,2,3},

one can get by following the previous steps of the argument

d4[C(3)(0)(x3 ⊗ y3)] ∈ K{0,1,2}K{1,2,3} + d4[C(3)(1)(x3 ⊗ y3)]−

d4[C(3)(2)(x3 ⊗ y3)]

⊆ K{0,1,2}K{1,2,3} + K{0,1,2}K{0,2,3}+

K{0,1,2}K{0,1,3}.

Number: 23

d4[C(2)(1)(x3 ⊗ y3)] = s2d3 x3(s1d3 y3 − s2d3 y3) + x3 y3.

Take elements

(s1d3 y3 − s2d3 y3 + y3) ∈ K{0,2,3} and (s2d3 x3 − x3) ∈ K{0,1,3}.

When putting them together, we obtain

d4[C(2)(1)(x3 ⊗ y3)] ∈ K{0,1,3}K{0,2,3} + d4[C(3)(1)(x3 ⊗ y3)]−

d4[C(3)(2)(x3 ⊗ y3) + C(3)(2)(y3 ⊗ x3)]

⊆ K{0,1,3}K{0,2,3} + K{0,1,2}K{0,2,3}+

K{0,1,2}K{0,1,3}.

Number: 24

d4[C(2)(0)(x3 ⊗ y3)] = s2d3(x3)s0d3(y3).

Elements

(s2d3 x3 − x3) ∈ K{0,1,3} and (s2d3 y3 − s1d3 y3 + s0d3 y3 − y3) ∈ K{1,2,3}.
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It follows that

d4[C(2)(0)(x3 ⊗ y3)] ∈ K{0,1,3}K{1,2,3} − d4[C(2)(1)(x3 ⊗ y3)]+

d4[C(3)(0)(x3 ⊗ y3)] + d4[C(3)(1)(x3 ⊗ y3)]+

d4[C(3)(2)(x3 ⊗ y3) + C(3)(2)(y3 ⊗ x3)]

⊆ K{0,1,3}K{1,2,3} + K{0,1,3}K{0,2,3}+

K{0,1,2}K{1,2,3} + K{0,1,2}K{0,2,3}+

K{0,1,2}K{0,1,3}.

Number: 25

d4[C(1)(0)(x3 ⊗ y3)] = s1d3(x3)(s0d3 y3 − s1d3 y3) + s2d3(x3 y3)− x3 y3,

and

(s1d3 x3 − s2d3 x3 + x3) ∈ K{0,2,3} and (s2d3 y3 − s1d3 y3 + s0d3 y3 − y3) ∈ K{1,2,3},

then one can have

d4[C(1)(0)(x3 ⊗ y3)] ∈ d4[C(3)(1)(y3 ⊗ x3) + C(3)(1)(x3 ⊗ y3)]−

d4[C(3)(0)(x3 ⊗ y3)] + d4[C(2)(0)(x3 ⊗ y3)]−

d4[C(2)(1)(x3 ⊗ y3) + C(2)(1)(y3 ⊗ x3)]−

d4[C(3)(2)(x3 ⊗ y3) + C(3)(2)(y3 ⊗ x3)]+

K{0,2,3}K{1,2,3}

⊆ K{0,1,2}K{0,1,3} + . . .+ K{0,2,3}K{1,2,3}.

So we have shown that for each Cαβ , ∂4(I4) ⊆
∑

I ,J KI KJ . The opposite inclusion of this can

be obtained by considering proposition 2.3.4. 2

So far we have shown, for n= 2, 3,4, what the image of the Moore complex of a simplicial

algebra looks like and also have proved proposition 2.3.4 which is

∑

I ,J

KI KJ ⊆ ∂n(N En).

With respect to all this information, we can identify the following theorem:
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Theorem 2.5.2 Let n= 2, 3, or 4 and let E be a simplicial algebra with Moore complex NE in

which En = Dn, Then

∂n(N En) =
∑

I ,J

KI KJ

for any I , J ⊆ [n− 1] with I ∪ J = [n− 1], I = [n− 1]− {α} and J = [n− 1]− {β}, where

(α,β) ∈ P(n).

Theorem 2.5.3 If En 6= Dn, then

∂n(N En ∩ Dn) =
∑

I ,J

KI KJ with n= 2,3, 4.
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CHAPTER 3

SIMPLICIAL ALGEBRAS AND CROSSED

COMPLEXES

3.1 CROSSED COMPLEXES

The definition of a crossed complex (over a groupoid) was earlier given by R.Brown and

P.J.Higgins (1981) [8] generalising earlier work of Whitehead (1949) [43]. The analogue

for algebras of the crossed complex is defined by T.Porter (1987) [37]. S.Lichtenbaum and

M.Schlessinger [31] and others had considered related ideas in 1967.

Definition 3.1.1 A crossed complex of k-algebras is a sequence of k-algebras

C : · · · → Cn
∂n→ Cn−1→ ·· · → C2

∂2→ C1
∂1→ R

in which

i) ∂1 is a crossed R-module,

ii) for i > 1, Ci is an R-module on which ∂1C1 operates trivially and each ∂i is an R-module

morphism,

iii) for i ≥ 1,∂i+1∂i = 0.

Morphisms of crossed complexes are defined in the obvious way : By a morphism of

crossed complexes ψ : C→D, one means a sequence ψ = {ψn} of algebra morphisms with
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component ψn : Cn→ Dn in degree n, such that the diagrams

Cn

dn

��

ψn // Dn

d ′n

��
Cn−1

ψn−1

// Dn−1

are commutative for all n andψn(c0 · cn) =ψ0(c0) ·ψn(cn) for all c0 ∈ C0, cn ∈ Cn, where the

d ′n denote differentials of the complex D. We therefore get a category of crossed complexes

of k-algebras denoted by XComp. Morphisms ψn, given above, are called ψ0-equivariant.

We let ChComp denote the category of connected positive chain complexes of modules

over k-algebras. Thus an object of ChComp is a pair (C , R) where R is a k-algebra and C is

a chain complex of R-modules such that the Ci , i ≤ 0, are all zero and d1 : C1→ C0 is onto.

Example 3.1.2 Given (C , R), we form a crossed complex, Γ ( C ,R)

· · · → Cn
∂n→ Cn−1→ ·· · → C2

∂2→ C1
∂1→ Rn C0.

Put ∂i = di if i > 1, ∂1 : C1→ RnC0 given by ∂1(c) = (0, d1(c)). Giving C1 the zero multiplica-

tion and a Rn C0-module structure via the projection from Rn C0 onto R, the action of Rn C0

on C1 can be given by (r, c0) · c1 = rc1, that is we make Rn C0 act on the Ci via the projection

onto R.

i) (C1, Rn C0,∂1) is a crossed module. For

∂1(c1) · c′1 = (0, d1c1) · c′1,

= 0c′1 = 0,

= c1c′1.

ii) For i > 1, by assumption, Ci are R-modules. Since RnC0 acts on the Ci via the projection

onto R, ∂1C1 operates trivially on the Ci . Clearly all the ∂i are R-module morphisms.

iii) ∂i+1∂i(c) = 0 for all i ≥ 1 from assumption.

We also say that a crossed complex C is a free if R is a k-algebra, C1 is a free crossed

R-module on some function (see Chapter 1) and for n ≥ 2, Cn is a free R-module on some

set X . The homology of a crossed complex C can be defined by

Hn(C ) = Ker∂n/Im∂n+1.
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Definition 3.1.3 A crossed complex C of k-algebras is exact if for n≥ 1,

Ker(∂n : Cn→ Cn−1) = Im(∂n+1 : Cn+1→ Cn).

Definition 3.1.4 A crossed resolution of a k-algebra B is a crossed complex

C : · · · → Cn
∂n→ Cn−1→ ·· · → C2

∂2→ C1
∂1→ C0

of k-algebras, where ∂1 is a crossed C0-module together with f : C0→ B a morphism, such that

the sequence

· · · → C2
∂2→ C1

∂1→ C0
f
→ B→ 0

is exact.

If, for i ≥ 0, the Ci are free and ∂1 a free crossed module, then the resolution is called a free

crossed resolution of the k-algebra B.

3.2 HYPERCROSSED COMPLEXES

Various generalisations of the Dold-Kan theorem (which is an equivalence between the cate-

gory of simplicial abelian groups and that of positive (abelian) chain complexes) are known.

For instance Ashley [3] proves an equivalence between the category of simplicial T-complexes

and that of crossed complexes.

P.Carrasco [12] (see also P.Carrasco and A.M.Cegarra [13]) also give the most general

non-abelian form of a Dold-Kan type theorem. They show how the Moore complex functor

defines a full equivalence between the category of simplicial groups and the category of what

are called hypercrossed complexes of groups, i.e. chain complexes of (non-abelian) groups

with an extra structure.

Recall the maps, from section 2.3, that

Cn
α,β : N En−#α ⊗ N En−#β −→ N En with (α,β) ∈ P(n)

given by

Cn
α,β(xα ⊗ yβ) = p(sα(xα)sβ(yβ))

for xα ∈ N En−#α and yβ ∈ N En−#β .

The maps involved in the definition of a hypercrossed complex (see P.Carrasco’s thesis

[12]). That thesis consists of a proof of the non-abelian Dold-Kan theorem (2.2.9, p.64) pre-

senting an equivalence between the category of simplicial algebras and that of hypercrossed

complexes. Another result from [12] is that the category of hypercrossed complexes together

with Cn
α,β = 0 is equivalent to that of crossed complexes of algebras.
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3.3 FROM SIMPLICIAL ALGEBRAS TO CROSSED COMPLEXES

P.Carrasco and A.M.Cegarra [13] denoted for a simplicial group G,

Cn(G) =
NGn

(NGn ∩ Dn)dn+1(NGn+1 ∩ Dn+1)

this gives a crossed complex C from the Moore complex (NG, ∂ ). Their proof requires an

understanding of hypercrossed complexes. P.J.Ehler and T.Porter [17] developed a direct

proof for simplicial groups/groupoids independently of [13]. Here we will do an analogous

argument for the algebra case and show that C is a crossed complex where we shall write

Cn(E) =
N En

(N En ∩ Dn) + dn+1(N En+1 ∩ Dn+1)

and if x ∈ N En, we will write x̄ for the corresponding element of Cn(E). The map ∂n :

Cn(E)→ Cn−1(E) will be induced by dn
n . We denote the nth term of crossed complex C by

Cn(E) instead of Cn as used in [17].

Lemma 3.3.1 The subalgebra (N En ∩ Dn) + dn+1(N En+1 ∩ Dn+1) is an ideal in En.

Proof: For any a ∈ N En ∩ Dn, x ∈ N En+1 ∩ Dn+1 and z ∈ En, the element z(a + dn+1 x)

can be written in the following form

z(a+ dn+1 x) = sn−1dn(z)a+ dn+1(sn(z)x + snzsna− sn−1zsna)

and so is in (N En ∩ Dn) + dn+1(N En+1 ∩ Dn+1). 2

By defining

∂n(z̄) = dn
n (z) with z ∈ N En,

one obtains a well defined map ∂ : Cn(E)→ Cn−1(E) verifying ∂ ∂ = 0.

Lemma 3.3.2 Let x , y ∈ En, for n≥ 2, then x y = a+ dn+1w, where

a = (sn−2dn y − sn−1dn y)sn−1dn x and w= (sn−1 y − sn−2 y)sn−1 x + sn xsn y.

Proof: This is immediate by direct calculation. 2
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Corollary 3.3.3 If, for n≥ 2 x ∈ N En−1 and y ∈ N En, then

sn−1(x)y ∈ [N En ∩ Dn + dn+1(N En+1 ∩ Dn+1)].

Proof: Replacing x by sn−1(x) in the elements a, w of the previous lemma implies

a = sn−1 x(sn−2dn y − sn−1dn y) and w= snsn−1 x(sn−1 y − sn−2 y) + (snsn−1 x)sn y.

It is easy to see that for i ≥ 1, dia = 0. Similarly diw = 0 for all i ≥ 0. By the previous

lemma, the element sn−1(x)y is in [N En ∩ Dn + dn+1(N En+1 ∩ Dn+1)]. 2

The significance of this corollary is that the actions of N Er on N En are by multiplication

via degeneracies.

In particular we choose the action

x̄ · ȳ = s(n−r)
r (x)y

where the (n− r)-superfix denotes an iterated application of the map. Thus if n≥ 2, N En−1

acts trivially on N En, as sn−1(x)y = 0. To satisfy the axioms of a crossed complex, we need

to check that C0 acts on Cn, for n≥ 1 and ∂1C1 acts trivially on Cn, for n≥ 2. To do this, we

will give the following lemmas.

Lemma 3.3.4 For each n, ∂n : Cn(E) −→ En−1 is a crossed module.

Proof: CM1) For e ∈ En−1, x ∈ N En, it is clear that since dn(sn−1(e)x) = edn(x), one

gets the following

∂ (e · x̄) = ∂ (sn−1(e) x̄)

= e∂ ( x̄).

CM2) We firstly take the element sn−1dn(x)y with x ∈ En, y ∈ N En:

sn−1dn(x)y = x y + dn+1[(sn−1 x − sn x)sn y]

and so

sn−1dn(x)y ≡ x y mod [N En ∩ Dn + dn+1(N En+1 ∩ Dn+1)]

and for x̄ , ȳ ∈ Cn(E)

∂ x̄ · ȳ = sn−1dn(x)y ≡ x y .

This is the verification of the Peiffer identity. 2

Later on we use this lemma for n= 1.
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Lemma 3.3.5 If x ∈ En−i+1 and y ∈ N En, then for any k, 1≤ k < i,

s(k)n s(i−k−1)
n−i (x)y ≡ s(k−1)

n s(i−k)
n−i (x)y mod [N En ∩ Dn + dn+1(N En+1 ∩ Dn+1)].

Proof: Writing s(k)n for sn . . . sn
︸ ︷︷ ︸

k−t imes

, we consider the element

s(k)n s(i−k)
n−i (x)sk(y) ∈ En+1.

We recall from section 2.3 that the linear morphisms

pl : En+1 −→ N En+1 ⊂ En+1 with 0≤ l ≤ n

given by

pl(z) = z − sl dl(z).

We also note the particular case of Cα,β , for α= (n, n− i), β = (k),

Cα,β(x , y) = C(n,n−i),(k)(x , y)

= pn . . . p0(s(k)n s(i−k)
n−i (x)sk(y)) ∈ N En+1 ∩ Dn+1.

We will prove that

dn+1(C(n,n−i),(k)(x , y))

is basically the difference between the two elements of this lemma.

Indeed, by putting zk,i(x , y) = s(k)n s(i−k)
n−i (x)sk(y) and recalling lemma 2.3.9, for α =

(n, n− i) and β = (k) with any j, 0≤ j ≤ n+ 1, we obtain

d jzk,i(x , y) =







































0 if k > j

s(k)n−1s(i−k−1)
n−i (x)y if k = j

s(k−1)
n s(i−k)

n−i (x)y if k = j − 1

0 if 1< j − i − k+ 1

0 if j > i + 1

and dn+1zk,i(x , y) = zk−1,i−1(x , dn+1 y). This gives

pn . . . p0zk,i(x , y) = pn . . . pi+kzk,i(x , y)

since the operators pl for l > i + 1 are trivial. We also note that

pn . . . pi+kzk,i(x , y) = pn . . . pk+1zk,i(x , y).
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Now if v ∈ En+1, then

dn+1pn(v) = dn+1v − dnv

dn+1pnpn−1(v) = dn+1pn−1(v)− dnpn−1(v)
(∗)

and so on. It follows that

dn+1pn . . . pk+1(zk,i(x , y)) = pn . . . pk(zk−1,i−1(x , dn y))− dnpn−1 . . . pk+1(zk,i(x , y)).

The first of these two terms is in N En ∩ Dn and hence we only check the second one. From

(∗), we get

dnpn−1 . . . pk+1(v) = dnpn−2 . . . pk+1(v)− dn−1pn−2 . . . pk+1(v)

and this implies

dl pl+1 . . . pk+1(zk,i(x , y))

and others of the form

dl−1pl+1 . . . pk+1(zk,i(x , y)).

If j < k− 1,

d j pk(z) = d j(z)− sk−1dk−1d j(z) = pk−1d j(z),

so any term of the form dl−1pl+1 . . . pk+1(zk,i(x , y)) can be written

pl . . . pk(dl−1(zk,i(x , y)))

and so is trivial if l > 1. Hence the only term is dkpk(zk,i(x , y)) and so

dkpk(zk,i(x , y)) = dk[s(k)n s(i−k)
n−i (x)sk(y)]− dkskdk[s(k)n s(i−k)

n−i (x)sk(y)]

= s(k−1)
n s(i−k)

n−i (x)y − s(k)n s(i−k−1)
n−i (x)y,

i.e. the difference of the two terms in the statement of the lemma. Putting

t = s(k−1)
n s(i−k)

n−i (x)y − s(k)n s(i−k−1)
n−i (x)y.

It then follows that

dn+1(C(n,n−i),(k)(x , y)) = pn . . . pk(zk−1,i−1(x , dn y))− t.

Having pn . . . pk(zk−1,i−1(x , dn y)) ∈ N En ∩ Dn and u ∈ N En+1 ∩ Dn+1 implies that

s(k)n s(i−k−1)
n−i (x)y ≡ s(k−1)

n s(i−k)
n−i (x)y mod [N En ∩ Dn + dn+1(N En+1 ∩ Dn+1)].
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This completes the proof . 2

The reason for proving this lemma is to give the subsequent one

Lemma 3.3.6 If n≥ 1, x ∈ En−i and y ∈ N En, then

s(i+1)
n−i (dn−i x)y ≡ s(i)n−i(x)y mod [N En ∩ Dn + dn+1(N En+1 ∩ Dn+1)].

Proof: Take the element v = s(i+1)
n−i (x)sn(y)−sns(i)n−i(x)sn(y). This is pn . . . p0s(i+1)

n−i (x)sn(y).

It is readily checked that di(v) = 0 for i ≥ 0 and dn+1(v) is the difference between the ele-

ments mentioned in the statement of the lemma. 2

Lemma 3.3.7 If n≥ 2, x ∈ N E1 and y ∈ N En, then

sn−1 . . . s1(x)y ≡ 0 mod [N En ∩ Dn + dn+1(N En+1 ∩ Dn+1)].

Proof: Consider

u= sn(y)sn . . . s1(x)− sn−1(y)sn . . . s1(x) +
n
∑

i=2

(−1)isn−i(y)sn . . . s1(x),

and it is easily checked to be in N En+1 ∩ Dn+1. Calculating dn+1(u) gives two terms, i.e.

dn+1u = [ysn−1 . . . s1(x)]− [sn−1dn(y)sn−1 . . . s1(x)−

sn−2dn(y)sn−1 . . . s1(x)+
∑n

i=2(−1)isn−idn(y)sn−1 . . . s1(x)].

Writing

v = sn−1dn(y)sn−1 . . . s1(x)− sn−2dn(y)sn−1 . . . s1(x)+
∑n

i=2(−1)isn−idn(y)sn−1 . . . s1(x),

it is readily checked that v ∈ N En and is as required. 2

The following is originally due to P.Carrasco and A.M.Cegarra [12] for the group case

and for the groupoid case due to P.J.Ehler and T.Porter [17].

Proposition 3.3.8 The construction: for each n≥ 0, then setting

Cn(E) =
N En

(N En ∩ Dn) + dn+1(N En+1 ∩ Dn+1)
with ∂ (x) = dn(x)

gives a crossed complex.
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Proof: i) from Lemma 3.3.4, ∂1 : C1(E)→ C0(E) is a crossed module,

ii) Lemma 3.3.2 and Corollary 3.3.3 show that C0 acts on Cn for n≥ 1 via sn−1 . . . s0 and

also make C1 act on Cn, n≥ 1 by multiplication via sn−1 . . . s1. Lemma 3.3.6 and repeated use

of Lemma 3.3.5 show that if x ∈ C1 then x and ∂1 x act on Cn in the same way, and Lemma

3.3.7 gives that ∂1C1 acts trivially on Cn,

iii) we noted ∂ ∂ = 0 after Lemma 3.3.1. 2

We thus have a functor

C : SimpAlg −→ XComp

Remark 3.3.9 N E1 ∩ D1 = 0. Indeed, any element of D1 has the form s0(x) for x ∈ E0, and

so if y ∈ N E1 ∩ D1, then y = s0(x) for some x ∈ E0. It follows from y ∈ N E1 = Kerd0 that

0= d0(y) = d0s0(x) = x

which implies x = 0 and so y = 0 as required. Hence C0(E) = N E0 = E0.

3.4 THE PARTICULAR CASE OF A ‘STEP-BY-STEP’ CONSTRUCTION OF

A FREE SIMPLICIAL ALGEBRA AND ITS SKELETON

In this section, we describe the special case of the ‘step-by-step’ construction of the free

simplicial algebra and its skeleton up to dimension 2 and will interpret this construction and

see how that relates to other algebraic constructions such as that of a free crossed module,

Koszul complexes, and so on.

Let Abe a subring of a commutative ring S, and consider the polynomial ring A[X1, . . . , Xn]

over A in n indeterminates X1, . . . , Xn. Let a1, . . . , an ∈ S. There is exactly one ring homo-

morphism g : A[X1, . . . , Xn]→ S with the properties that

g(r) = r for all r ∈ A

and

g(X i) = ai for all i = 1, . . . , n.

This homomorphism g is called the evaluation homomorphism or just evaluation at a1, . . . , an.

If g : A[X1, . . . , Xn]→ A is the evaluation homomorphism at a1, . . . , an, then

Kerg = (X1 − a1, . . . , Xn − an).
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For this, see for instance R.Y.Sharp [41].

Let k be a commutative ring with unit and R be a commutative k-algebra with an ideal

I = (x1, . . . , xn) of R generated by the elements x1, . . . , xn in R. Let K(R, 0) denote the

simplicial algebra which in every dimension is equal to R and di = id = s j , for all i, j.

There is an obvious epimorphism:

f : R −→ R/(x1, . . . , xn)

which gives an isomorphism R/Ker f ∼= B, where B = R/I .

Let

Ω0 = {x1, . . . , xn} ⊂ Ker f .

The 1-skeleton E(1) of the free simplicial resolution of B can be built by adding new indeter-

minates X = {X1 . . . , Xn} into E(0)1 = R to form

E(1)1 = E(0)1 [X ] = R[X1, . . . , Xn],

with the face maps and degeneracy map

R[X1, ..., Xn]
d0, d1 //

// R
s0

oo

given by

d1
1 (X i) = x i ∈ Ker f , d1

0 (X i) = 0, s0(r) = r ∈ R.

Thus the 1-skeleton E(1) looks like:

E(1) : . . . R[s0(X ), s1(X )] //
//

d0, d1, d2 //

R[X ]oo

s0, s1
oo

d0, d1 //
// R

s0
oo

f // R/I .

Note that for n > 1, higher levels of E(1) are generated by the degenerate elements, so we

can apply our results from chapter 2.

Lemma 3.4.1 We assume given the 1-skeleton E(1). Let d1
0 and d1

1 be evaluation homomor-

phisms. Then

i) Kerd1
0 = R+[X1, . . . , Xn] = (X1, . . . , Xn),

ii) Kerd1
1 = (X1 − x1, . . . , Xn − xn).

61



Proof: These follows immediately from Kerg = (X1 − a1, . . . , Xn − an), because d1
0 and

d1
1 are evaluation homomorphisms at 0, . . . , 0 and x1, . . . , xn respectively. 2

Note π0(E(1))∼= B.

Before carrying on the ‘step-by-step’ construction of the free simplicial algebra , we will

interpret the first homotopy module π1(E(1)) of E(1) to find what it looks like.

For any simplicial algebra E, if E= E(1), then

π1(E) = Ker(Kerd1
0/Kerd1

0 Ker
d1

1
−→ E0).

Indeed, by definition, the first homotopy module looks like

π1(E) = (Kerd1
0 ∩ Kerd1

1 )/d
2
2 (Kerd2

0 ∩ Kerd2
1 ).

From chapter 2 in section 4, the denominator of this homotopy module is exactly

∂2(N E2) = d2
2 (Kerd2

0 ∩ Kerd2
1 ) = Kerd1

0 Kerd1
1 .

Consider the morphism

δ : Kerd1
0/∂2(N E2) −→ E0,

where δ = d1 (restricted to N E1/∂2N E2). This is a crossed module. N E0 acts on N E1/∂2N E2

by multiplication via s, i.e.,

N E1/∂2N E2 × N E0 −→ N E1/∂2N E2

(x , y) 7−→ x · y = s0(y)x ,

where x denotes the corresponding element of N E1/∂2N E2 whilst x ∈ N E1. Since x(s0d1 y)−

x y = x(s0d1 y− y) ∈ Kerd0Kerd1 = ∂2N E2 with x , y ∈ N E1, one can readily see that δ is the

crossed module. Indeed, we show that the Peiffer condition for crossed module is satisfied,

as follows:

For all x + ∂2N E2, y + ∂2N E2 with x , y ∈ N E1,

δ(x + ∂2N E2) · (y + ∂2N E2) = δ(x) · (y + ∂2N E2),

= d1(x) · y + ∂2N E2,

= s0d1(x)y + ∂2N E2 by the action,

≡ x y + ∂2N E2 mod ∂2N E2,

= (x + ∂2N E2)(y + ∂2N E2),
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as required.

Finally, using Ker(d1 :Kerd0→ E0) =Kerd0∩Kerd1, one obtains

π1(E) = Ker(Kerd1
0/∂2(N E2) −→ E0)

= Ker(N E1/Kerd0Kerd1 −→ E0).

In general, we may say that if E(k) is the k-skeleton of the free simplicial algebra, then for

k ≥ 1,

πk(E
(k)) = Ker(N E(k)k /∂k+1(N E(k+1)

k+1 ) −→ Ek−1).

Proposition 3.4.2 For any E with E= E(1), ∂2(N E2) is generated by the Peiffer elements.

Proof: By the case n= 2 in chapter 2, we have ∂2(N E2) = Kerd1
0 Kerd1

1 and from lemma

3.4.1, we have

Kerd1
1 = (X1 − x1, . . . , Xn − xn),

Kerd1
0 = (X1, . . . , Xn).

Thus Kerd0Kerd1 is an ideal generated by the elements of the form

(X i − x i)X j with 1≤ i, j ≤ n

which are the Peiffer elements. In other words, take generator elements (X i − s0d1X i)X j of

∂2(N E2) and then

(X i − s0d1X i)X j = (X i − s0 x i)X j

= (X i − x i)X j

as d1(X i) = x i . 2

Proposition 3.4.3 Given a presentation P = (R ; x1, . . . , xn) of an R-algebra B and E(1) the

1-skeleton of the free simplicial algebra generated by this presentation, then

δ : N E(1)1 /∂2(N E(1)2 ) −→ N E(1)0

is the free crossed module on {x1, . . . , xn} → R. In particular,

π1(E
(1))∼= Ker(C −→ R)

where C ∼= Rn/Imd.

63



Proof: As we noted earlier, there is an equality

π1(E
(1)) = Ker(N E1/Kerd0Kerd1→ E0).

It follows from lemma 3.4.1 that

N E(1)1 = Kerd1
0 = R+[X1, . . . , Xn].

Moreover by the previous proposition, ∂2(N E(1)2 ) =Kerd0Kerd1 is generated by the Peiffer

elements of the form

(X i − x i)X j with 1≤ i, j ≤ n.

From theorem 1.4.2, we can thus define a free crossed module

δ : R+[X1, . . . , Xn]/Kerd1
0 Kerd1

1 −→ R.

Any polynomial in R+[X1, . . . , Xn] is congruent modulo Kerd1
0 Kerd1

1 to a monomial, i.e., an

element in R{X1,...,Xn}, the free module Rn with basis X1, . . . , Xn. This module has an algebra

structure up to equivalence

X iX j ≡ x iX j ≡ x jX i mod P1.

Putting

C ∼= R+[X1, . . . , Xn]/Kerd1
0 Kerd1

1 .

and applying proposition 1.5.2 which gives

C = Rn/Imd.

where d : Λ2Rn→ Rn is the usual Koszul differential carrying the element X i∧X j toϕ(X i)X j−

X iϕ(X j), ϕ : Rn→ R given by ϕ(X i) = x i . 2

Thus 3.4.3 gives the following corollary:

Corollary 3.4.4

π1(E
(1)) = Ker(Rn/Imd −→ R).

We now will recall the next step of the construction of a free simplicial algebra. Firstly

we took a set of generators

Ω1 = {y1, . . . , ym} ⊂ π1(E
(1))
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and kill off the elements in the homotopy module π1(E(1)) by adding new indeterminates

Y = {Y1, . . . , Ym} into E(1)2 to establish

E(2)2 = E(1)2 [Y ] = (R[s0(X ), s1(X )])[Y ].

together with

d2
0 (Yi ) = 0, d2

1 (Yi ) = 0, d2
2 (Yi) = yi .

Hence the 2-skeleton E(2) looks like

E(2) : . . . (R[s0(X ), s1(X )])[Y ] //
//

d0, d1, d2 //

R[X ]oo

s0, s1
oo

d0, d1 //
// R

s0
oo

f // R/I .

For E(2), higher levels than dimension 2 are generated by degeneracy elements.

3.5 FREE CROSSED RESOLUTIONS

The reason for giving the previous section is the following construction.

A ‘step-by-step’ construction of a free simplicial algebra is constructed from simplicial

algebra inclusions

E(0) ⊆ E(1) ⊆ E(2) ⊆ . . .

In the following, we take the functor C, which is described in section 3.3, to see what Ck(E(k))

looks like, where E(k) is the k-skeleton of that construction.

Recall the ‘step-by-step’ construction of the free simplicial algebra E

For k = 0, there is the 0-skeleton E(0) of the construction

. . . R −→ R −→ R/(x1, . . . , xn).

Here E(0) is the trivial simplicial algebra in which in every degree n, E(0)n = R and dn
i = id= sn

j .

It is easy to see that C0(E(0)) = R as N E1 ∩ D1 is trivial.

The 1-skeleton, for k = 1, E(1) is

E(1) : . . . R[s0(X ), s1(X )] //
//

d0, d1, d2 //

R[X ]oo

s0, s1
oo

d0, d1 //
// R

s0
oo

f // R/I .
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and since E(1)2 is generated by the degeneracy elements, E(1)2 = D2. So the crossed complex

term C1(E(1)) is the following

C1(E(1)) =
N E(1)1

[N E(1)1 ∩ D1 + ∂2(N E(1)2 ∩ D2)],

=
N E(1)1

∂2(N E(1)2 ∩ D2)
since N E1 ∩ D1 = 0,

=
N E(1)1

∂2(N E(1)2 )
as E(1)2 = D2.

By lemma 3.4.1 and proposition 3.4.2, we have N E(1)1 = R+[X1, . . . , Xn] and ∂2(N E(1)2 ) is

generated by the Peiffer elements, respectively. It then follows that

C1(E
(1)) = R+[X1, . . . , Xn]/P1.

Here P1 is the first order Peiffer ideal. The proof of theorem 1.4.2 shows that

∂1 : R+[X1, . . . , Xn]/P1 −→ R

is a free crossed module.

Looking at the case 2, the 2-skeleton of the construction is

E(2) : . . . (R[s0(X ), s1(X )])[Y ] //
//

d0, d1, d2 //

R[X ]oo

s0, s1
oo

d0, d1 //
// R

s0
oo

f // R/I .

As before E(2)3 = D3 as E(2)3 is generated by the degeneracy elements. Thus the second term

of crossed complex is

C2(E(2)) =
N E(2)2

[N E(2)2 ∩ D2 + ∂3(N E(2)3 ∩ D3)],

=
N E(2)2

[N E(2)2 ∩ D2 + ∂3(N E(2)3 )]
as E(2)3 = D3.

If x , y ∈ N E1, then N E2 ∩ D2 is generated by the elements of the form

s1 x(s0 y − s1 y)

and in general, if x , y ∈ N En−1, then

sn−1 x(sn−2 y − sn−1 y) ∈ N En ∩ Dn.
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For the case of E(2), if X i and X j are in N E(2)1 , then the generators of the ideal N E(2)2 ∩D2 are

of the form

s1X i(s0X j − s1X j).

Now look at ∂3(N E(2)3 ) in terms of the skeleton E(2). In a similar way to the proof of

lemma 3.4.1 and to d2
0 (Yi) = d2

1 (Yi) = 0, one can readily obtain the following:

N E(2)2 = (R[s0(X ), s1(X )])
+[Y ].

On the other hand, Chapter 2 provides the following result which is

∂3(N E(2)3 ) =
∑

{I ,J}

KI KJ + K{0,1}K{0,2} + K{0,2}K{1,2} + K{0,1}K{1,2}

where I ∪ J = [2], I ∩ J = ; and

K{0,1}K{0,2} = (Kerd0 ∩ Kerd1)(Kerd0 ∩ Kerd2)

K{0,2}K{1,2} = (Kerd0 ∩ Kerd2)(Kerd1 ∩ Kerd2)

K{0,1}K{1,2} = (Kerd0 ∩ Kerd1)(Kerd1 ∩ Kerd2)

which are generated by the following elements, for X i ∈ N E1 = Kerd0 and Yi ∈ N E2 =

Kerd0∩Kerd1

(s1s0d1X i − s0X i)Yj ,

(s0X i − s1X i)(s1d2Yj − Yj),

s1X i(s0d2Yj − s1d2Yj + Yj);

and for Yi and Yj ∈ N E2 with 1≤ i, j ≤ n

Yi(s1d2Yj − Yj),

Yi(Yj + s0d2Yj − s1d2Yj),

(s0d2Yi − s1d2Yi + Yi)(s1d2Yj − Yj).
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Rewrite these elements as follows:

(s1s0d1X i − s0X i)Yj (i)

Yi(s1d2Yj − Yj) (ii)

(s0X i − s1X i)(s1d2Yj − Yj) (iii)

Yi(Yj + s0d2Yj − s1d2Yj) (iv)

s1X i(s0d2Yj − s1d2Yj + Yj) (v)

(s0d2Yi − s1d2Yi + Yi)(s1d2Yj − Yj) (vi).

The ideal generated by these elements will be denoted by P2 and will be called the second

order Peiffer ideal. In the next chapter, we will explicitly interpret these second order Peiffer

elements.

Thus we can immediately state the subsequent proposition:

Proposition 3.5.1 For any simplicial algebra E, if E = E(2), then the image of the third term

of the Moore complex of E(2) is generated by the second order Peiffer elements P2.

Finally writing Q2 = N E(2)2 ∩ D2, we get the second term of crossed complex as follows

C2(E
(2)) =

(R[s0(X ), s1(X )])+[Y ]
Q2 + P2.

We thus can form:

Proposition 3.5.2 Let E(2) be the 2-skeleton of a free simplicial algebra. Then

C (2) : (R[s0(X ), s1(X )])
+[Y ]/[Q2 + P2]

∂2→ R+[X ]/P1
∂1→ R

f
→ R/I

g
→ 0

is the k-skeleton of a free crossed resolution of R/(x1, . . . , xn), where ∂2 and ∂1 are given by

respectively, for Yi ∈ (R[s0(X ), s1(X )])+[Y ] and X i ∈ R[X ]+,

∂2[Yi + (Q2 + P2)] = ∂2(Yi) + P1 and ∂1(X i + P1) = ∂1(X i).

Proof: This follows immediately from the particular case of the step-by-step construc-

tion of the free simplicial algebra. 2

Conjecture: If E(k) is the k-skeleton of the construction of the free simplicial resolution,

then

C (k) : N E(k)k /[Qk + Pk]
∂k→ ·· ·

∂2→ N E(1)1 /P1
∂1→ R

f
→ R/I → 0
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is the k-skeleton of a free crossed resolution of R/I , where Pk is the kth order of Peiffer ideal

in N E(k)k and Qk = N E(k)k ∩ Dk.
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CHAPTER 4

2-CROSSED MODULES AND THE N-TYPE

OF THE K-SKELETON

4.1 2-CROSSED MODULES OF ALGEBRAS

As was mentioned in chapter 2, crossed modules were initially defined by Whitehead as

models for 2-types. D.Conduché, [14], in 1984 described the notion of 2-crossed module as

a model for 3-types

In this section, we describe a 2-crossed module and a free 2-crossed module of algebras

by using the second order Peiffer elements. The following definition of 2-crossed modules

of commutative algebras was given by A.R.Grandjeán and M.J.Vale [24].

Definition 4.1.1 A 2-crossed module of k-algebras consists of a complex of C0-algebras

C2
∂2 // C1

∂1 // C0

and ∂2,∂1 morphisms of C0-algebras, where the algebra C0 acts on itself by multiplication such

that

C2
∂2 // C1

is a crossed module. Thus C1 acts on C2 via C0 and we require that for all x ∈ C2, y ∈ C1 and

z ∈ C0 that (x y)z = x(yz). Further, there is a C0-bilinear function giving

{ ⊗ } : C1 ⊗C0
C1 −→ C2,
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called a Peiffer lifting, which satisfies the following axioms:

P L1 : ∂2{y0 ⊗ y1} = y0 y1 − y0 · ∂1(y1),

P L2 : {∂2(x1)⊗ ∂2(x2)} = x1 x2,

P L3 {y0 ⊗ y1 y2} = {y0 y1 ⊗ y2}+ ∂1 y2 · {y0 ⊗ y1}

P L4 : a) {∂2(x)⊗ y} = y · x − ∂1(y) · x ,

b) {y ⊗ ∂2(x)} = y · x ,

P L5 : {y0 ⊗ y1} · z = {y0 · z ⊗ y1}= {y0 ⊗ y1 · z},

for all x , x1, x2 ∈ C2, y, y0, y1, y2 ∈ C1 and z ∈ C0.

We denote such a 2-crossed module of algebras by {C2, C1, C0, ∂2, ∂1}.

Note that since { ⊗ } is C0-bilinear, we have the equalities:

{y0 ⊗ (y1 + y2)} = {y0 ⊗ y1}+ {y0 ⊗ y2},

{(y0 + y1)⊗ y2} = {y0 ⊗ y2}+ {y1 ⊗ y2}.

A morphism of 2-crossed modules of algebras may be pictured by the diagram

C2

f2

��

∂2 // C1

f1

��

∂1 // C0

f0

��

C
′

2

∂
′

2 // C
′

1

∂
′

1 // C
′

0

such that f0∂1 = ∂ ′1 f1, f1∂2 = ∂ ′2 f2 and such that

f1(c0 · c1) = f0(c0) · f1(c1), f2(c0 · c2) = f0(c0) · f2(c2),

and

{ ⊗ } f1 ⊗ f1 = f2{ ⊗ },

for all c2 ∈ C2, c1 ∈ C1, c0 ∈ C0.

We thus define the category of 2-crossed module denoting it as X2Mod.

Morphisms f1 and f2 are called equivariant if C0 = C ′0 with f0 = identity of C0.
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The following theorems, in some sense, are well known in algebraic setting such as group,

Lie algebras. Thus we do not give all details of the proofs as analogous proofs can be found

in the literature [22], [14] and the adaptation to the case of commutative algebras is routine

We show that the usefulness of ∂nN En of order 2 gives the following theorem:

Theorem 4.1.2 The category of crossed modules is equivalent to the category of simplicial al-

gebras with Moore complex of length 1.

Proof: Let E be a simplicial algebra with Moore complex of length 1. Put

M = N E1, N = N E0 and ∂1 = d1 (restricted to M).

Then N E0 acts on N E1 by multiplication via s0. Since the Moore complex is of length 1, we

have

∂2N E2 = Kerd0Kerd1 = 0

and the generators of this ideal are of the form x(s0d1 y − y) with x , y ∈ N E1 (see section

2.4.1). It then follows that for all x , x ′ ∈ M ,

∂1(x) · x ′ = d1(x) · x ′

= s0d1(x)x ′ by the action,

= x x ′ since ∂2N E2 = 0.

Thus ∂1 : M → N is a crossed module. This yields a functor

N1 :SimpAlg // XMod

Conversely, let ∂1 : M → N be a crossed module. By using the action of N on M , one forms

the semidirect product M o N together with homomorphisms

d0(m, n) = n, d1(m, n) = ∂1m+ n, s0(n) = (0, n).

Define

E0 = N , E1 = M o N .

Then, we have a 1-truncated simplicial algebra

{E0, E1}.
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There is a cosk1 functor from the category of 1-truncated simplicial algebras to that of sim-

plicial algebras. Thus we have the following diagram

SimpAlg
N1 // XMod

}}
Tr1SimpAlg

cosk1

bb

and this enables us to define a functor

S1 : XMod // SimpAlg

Using lemma 1.1.6, E is a simplicial algebra whose Moore complex is of length 1. The corre-

spondence gives rise to an equivalence of categories. 2

The reason for giving this theorem is to generalise it. Before that we present some results.

Let E be a simplicial algebra with Moore complex NE and let NE′ be the truncation of

the Moore complex NE of order 2

NE′ : N E2
∂2−→ N E1

∂1−→ N E0.

Writing

L = N E2 = Kerd0 ∩ Kerd1,

M = N E1 = Kerd0,

N = N E0 = E0,

with N E′3 = 0. Using the generator elements of ∂3(N E′3) = 0, one gets the following

l(s1s0d1m− s0m) ∈ (Kerd0 ∩ Kerd1)Kerd2,

l1(s1d2l0 − l0) ∈ (Kerd0 ∩ Kerd1)(Kerd0 ∩ Kerd2),

(s1d2l − l)(s0m− s1m) ∈ (Kerd0 ∩ Kerd2)Kerd1,

(l + s0d2l − s1d2l)s1m ∈ (Kerd1 ∩ Kerd2)Kerd0.
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and these imply the equalities:

l(s1s0d1m− s0m) = 0 (1)

l1(s1d2l0 − l0) = 0 (2)

(s0m− s1m)(s1d2l − l) = 0 (3)

s1m(l + s0d2l − s1d2l) = 0 (4)

with l1, l0, l ∈ L and m ∈ M .

Consider the following diagram of morphisms

M ⊗M

ρ

""||
L

∂2 // M
∂1 // N

The algebra M acts, in two ways, on the algebra L: by multiplication via s0 and via s1 in

E2. The action via s0 will be denoted by l ·m = s0(m)l and the action via s1 will be denoted

by m · l = s1(m)l. The action of N on L is given as follows:

from equality (1), there is a commutative diagram

L ⊗M

id ⊗ ∂1

��

. // L

id

��
L ⊗ N // L

given by

(l ⊗m)_

��

� // l ·m= s0(m)l_

��
(l ⊗ ∂1m) � // l · ∂1(m) = (s1s0d1m)l,

which gives an equality

∂1(m) · l = s1s0∂ (m)l = s0(m)l = l ·m (∗).
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Define the map ρ, for m0, m1 ∈ M ,

ρ(m0 ⊗m1) = m0m1 −m0 · ∂1m1

that is the Peiffer element in M corresponding to {m0 ⊗m1}. Thus ∂1 : M → N is a crossed

module if this map ρ is zero. Next identify the map M ⊗ M → L by using P.Carrasco’s idea

to interpret the Peiffer lifting map

{ ⊗ } : M ⊗M −→ L.

This is correspond to the map which is defined in section 2.3.,

−C(1)(0) : N E1 ⊗ N E1 −→ N E2

given by

C(1)(0) (m0 ⊗m1) = p(s1(m0)s0(m1)) = p1p0(s1(m0)s0(m1))

and we thus readily obtain

−C(1)(0)(m0 ⊗m1) = s1m0(s1m1 − s0m1).

We will show that the generating elements of ∂3(N E3 ∩ D3) pays off the following result.

Proposition 4.1.3 Let E be a simplicial algebra with the Moore complex NE. Then the complex

of algebras

N E2/∂3(N E3 ∩ D3)
∂ 2 // N E1

∂1 // N E0

is a 2-crossed module of algebras, where the Peiffer map is defined as follows:

{ ⊗ } : N E1 ⊗ N E1 −→ N E2/∂3(N E3 ∩ D3)

(y0 ⊗ y1) 7−→ s1 y0(s1 y1 − s0 y1).

Here the right hand side denotes a coset in N E2/∂3(N E3 ∩ D3) represented by an element in

N E2.

Proof: We will show that all axioms of a 2-crossed module are verified. It is readily

checked that the morphism ∂ 2 : N E2/∂3(N E3 ∩ D3)→ N E1 is a crossed module (see propo-

sition 5.1.4). In the following calculations we display the elements omitting the overlines

as:
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PL1:
∂ 2{y0 ⊗ y1} = ∂2(s1 y0(s1 y1 − s0 y1))

= d2s1 y0(d2s1 y1 − d2s0 y1)

= y0(y1 − s0d1 y1)

= y0 y1 − y0(s0d1)y1

= y0 y1 − y0 · ∂1 y1.

PL2: From ∂3(C(1)(0)(x1 ⊗ x2)) = s1d2(x1)s0d2(x2) − s1d2(x1)s1d2(x2) + x1 x2 (see p. 46),

one obtains
{∂ 2(x1)⊗ ∂ 2(x2)} = s1d2 x1(s1d2 x2 − s0d2 x2)

≡ x1 x2 mod ∂3(N E3 ∩ D3).

PL3:

{y0 ⊗ y1 y2} = s1 y0[s1(y1 y2)− s0(y1 y2)]

= s1 y0[s1(y1)s1(y2)− s1(y1)s0(y2) + s1(y1)s0(y2)− s0(y1)s0(y2)]

= s1 y0[s1 y1(s1 y2 − s0 y2)] + [s1 y0(s1 y1 − s0 y1)]s0 y2

= s1(y0 y1)(s1 y2 − s0 y2) + {y0 ⊗ y1}s0 y2

but ∂3(C(1,0)(2)(y ⊗ x)) = (s1s0d1 y − s0 y)x , so this implies

{y0 ⊗ y1 y2} ≡ s1(y0 y1)(s1 y2 − s0 y2) + s1s0d1(y2){y0 ⊗ y1} mod ∂3(N E3 ∩ D3)

= {y0 y1⊗y2}+ ∂1 y2 · {y0 ⊗ y1} by the definition of the action.

PL4: a)

{∂ 2(x)⊗ y} = s1∂2 x(s1 y − s0 y),

but

∂3(C(2,0)(1)(y ⊗ x)) = (s0 y − s1 y)s1d2 x − (s0 y − s1 y)x ∈ ∂3(N E3 ∩ D3)

and

∂3(C(1,0)(2)(y ⊗ x)) = (s1s0d1 y − s0 y)x ∈ ∂3(N E3 ∩ D3),

(see p. 45 and 44) so then

{∂ 2(x)⊗ y} ≡ s1(y)x − s0(y)x mod ∂3(N E3 ∩ D3)

≡ s1(y)x − s1s0d1(y)x mod ∂3(N E3 ∩ D3)

= y · x − ∂1(y) · x by the definition of the action,
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b) since ∂3(C(2,1)(0)(y ⊗ x)) = s1 y(s0d2 x − s1d2 x) + s1(y)x ,

{y ⊗ ∂ 2(x)} = s1 y(s1∂2 x − s0∂2 x)

≡ s1(y)x mod ∂3(N E3 ∩ D3)

= y · x by the definition of the action.

PL5:

{y0 ⊗ y1} · z = (s1 y0(s1 y1 − s0 y1)) · z

= s1s0(z)s1(y0)(s1 y1 − s0 y1)

= s1(s0(z)y0)(s1 y1 − s0 y1)

= s1(y0 · z)(s1 y1 − s0 y1) by the definition of the action

= {y0 · z ⊗ y1}.

Clearly the same sort of argument works for

{y0 · z ⊗ y1}= {y0 ⊗ y1 · z}

with x , x1, x2 ∈ N E2/∂3(N E3 ∩ D3), y, y0, y1, y2 ∈ N E1 and z ∈ N E0. This completes the

proof of the proposition. 2

This proposition gives the generalisation of theorem 4.1.2 as follows. The methods we

use for proving the subsequent result are based on ideas of Ellis, [22]. A different prove of

this result for the commutative algebraic version is noted in [24].

Theorem 4.1.4 The category of 2-crossed modules is equivalent to the category of simplicial

algebras with Moore complex of length 2.

Proof: Let E be a simplicial algebra with Moore complex of length 2. In the previous

proposition, a 2-crossed module

N E2
∂2 // N E1

∂1 // N E0

has already been constructed. Thus there exists an obvious functor

N2 :SimpAlg // X2Mod
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Conversely suppose given a 2-crossed module

L
∂2−→ M

∂1−→ N .

Define E0 = N . We can create the semidirect product E1 = M o N by using the action of N

on M together with homomorphisms

d0(m, n) = n, d1(m, n) = ∂1m+ n, s0(n) = (0, n),

By using the axioms a) and b) of the P L3, there is an action of m ∈ M on l1 ∈ L given by

m · l1 = ∂1m · l1 − {∂2l1 ⊗m}.

Using this action we form the semidirect product L o M . An action of (m, n) ∈ M o N on

(l1, m1) ∈ L oM is given by

(m, n) · (l1, m1) = (m · l1 + n · l1, mm1 + n ·m).

Using this action we get the semidirect product

E2 = (L oM)o (M o N).

(The bilinearity of { ⊗ } to together with axioms P L3 and P L5 ensure that these last two

actions are indeed commutative actions.) There are homomorphisms

d0(l1, m1, m2, n) = (m2, n) s0(m2, n) = (0,0, m2, n),

d1(l1, m1, m2, n) = (m1 +m2, n) s1(m2, n) = (0, m2, 0, n).

d2(l1, m1, m2, n) = (m1,∂1m2 + n),

We have a 2-truncated simplicial algebra

{E0, E1, E2}.

There is a cosk2 functor from the category of 2-truncated simplicial algebras to that of sim-

plicial algebras. Thus we have the following diagram

SimpAlg
N2 // XMod

}}
Tr2SimpAlg

cosk2

bb
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and this enables us to define a functor

S2 : X2Mod // SimpAlg

Using lemma 1.1.6, E is a simplicial algebra whose Moore complex is of length 2. This cor-

respondence gives rise to an equivalence of categories completing the proof of the theorem.

2

4.1.1 FREE 2-CROSSED MODULES

The definition of a free 2-crossed module is similar in some ways to the corresponding def-

inition of a free crossed module. However, the construction of a free 2-crossed module is a

bit more complicated and is given by means of the 2-skeleton of a free simplicial algebra.

Definition 4.1.5 Let {C2, C1, C0,∂2,∂1} be a 2-crossed module, let Y be a set and let ϑ : Y →

C2, then {C2, C1, C0,∂2,∂1} is said to be a free 2-crossed module with basis ϑ or, alternatively,

on the function ∂2ϑ : Y → C1 if for any 2-crossed module {C ′2, C1, C0,∂ ′2,∂1} and function

ϑ′ : Y → C ′2 such that ∂2ϑ = ∂ ′2ϑ
′, there is a unique morphism

Φ : C2 −→ C ′2

such that ∂ ′2Φ= ∂2.

The 2-crossed module {C2, C1, C0,∂2,∂1} is totally free if ∂1 : C1 → C0 is a totally free

pre-crossed module.

This situation may be pictured as

C2

Φ

��

∂2 // C1

id

��

∂1 // C0

id

��

Y
ϑ′

�� ��

ϑ

__ ??

C ′2 ∂ ′2

// C ′1 ∂ ′1

// C ′0
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We shall give an explicit description of the construction of a free 2-crossed module. For this,

we need to recall the 2-skeleton of the free simplicial algebra which is

E(2) : . . . (R[s0(X )s1(X )])[Y ] //
//

d0, d1, d2 //

R[X ]oo

s0, s1
oo

d0, d1 //
// R,

s0
oo

with the simplicial structure defined as in section 3.4.

Again, we will assume that Y and X are sets of m indeterminates Y1, . . . , Ym and n inde-

terminates, X1, . . . , Xn, respectively and we will assume m, n<∞. Define a morphism

ψ : (R[s0(X ), s1(X )])
+[Y ] −→ R+[X ],

where ψ is induced by d2 and define

ϕ : R+[X ] −→ R,

here ϕ is induced by d1. We denote this 2-dimensional construction (see section 3.4) data

by (Y, X ;ψ,ϕ, R).

The construction of a free 2-crossed module is as follows:

Theorem 4.1.6 A totally free 2-crossed module {L, E, R,ψ′,ϕ} exists on the 2-dimensional

construction data (Y, X ;ψ,ϕ, R).

Proof: Suppose given the 2-dimensional construction data described above and given a

function f from a set Y to E = R+[X ], the positively graded part of the polynomial algebra

over an k-algebra R in the n indeterminates X i .

Take D = (R[s0(X ), s1(X )])+[Y ], the positively graded part of the polynomial algebra on

Y so that E acts on D by multiplication via s1. f induces a morphism ψ of E-algebras

D
ψ // E

Y

f

??``

defined on generators by ψ(y) = f (y).
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Let {A, E, R,δ,η} be any 2-crossed module and let ϑ′ :Y → A with δϑ′ = f . Recall the

second order Peiffer ideal P2 in D. It is easily checked that ψ(P2) = 0 as all generator

elements of P2 are in Kerd2. By taking the factor module L = D/P2, there exists a morphism

ψ′ : L→ E such that the diagram,

D
ψ //

q

��

E

L

ψ′

??

commutes, where q is the quotient morphism of algebras. Thus ψ′ is a crossed module.

Indeed, given the elements y + P2, y ′ + P2 ∈ L,

ψ′(y + P2) · (y ′ + P2) = ψ(y) · y ′ + P2

= s1d2(y)y ′ + P2

≡ y y ′ + P2 mod P2

= (y + P2)(y ′ + P2).

Hence there exists a unique morphism Φ : L → A given by Φ(y + P2) = ϑ
′(y) such that

δΦ=ψ′. That is

Y ϑ // L

Φ

��

ψ′ // E

id

��

ϕ // R

id

��
Y

ϑ′
// A

δ
// E η

// R

Therefore {L, E, R,ψ′,ϕ}, or the complex

(R[s0(X ), s1(X )])
+[Y ]/P2

ψ′

−→ R+[X ]
ϕ
−→ R

is the required free 2-crossed module on (Y, X ;ψ,ϕ, R). Here P2 is the second order Peiffer

ideal in (R[s0(X ), s1(X )])+[Y ]. The Peiffer lifting map

{ ⊗ } : R+[X ]⊗ R+[X ] −→ (R[s0(X ), s1(X )])
+[Y ]/P2
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is induced by the map

ω : R+[X ]⊗ R+[X ] −→ (R[s0(X ), s1(X )])
+[Y ]

given by

ω(X i ⊗ X j) = s1X i(s1X j − s0X j) with X i , X j ∈ R+[X ].

Thus we can define the Peiffer lifting map by

{X i ⊗ X j}=ω(X i ⊗ X j) = s1X i(s1X j − s0X j).

In a similar way to proposition 4.1.5, the 2-crossed module axioms can be checked. 2

Note: In the group case, a closely related structure to that of 2-crossed module is that of

a quadratic module, defined by H.J.Baues [5]. Although it seems intuitively clear that the

results above should extend to an algebra version of quadratic modules. I have not managed

to check all the details and so have omitted a study of this idea from this thesis.

4.2 THE N-TYPE OF THE K-SKELETON

Recall from [1] that a morphism f : E→ F of simplicial algebras will be called an n-equivalence

if

πi(f) : πi(E) −→ πi(F),

is an isomorphism for all i, 0 ≤ i ≤ n. Two simplicial algebras E and F are said to have the

same n-type if there is a chain of n-equivalences linking them. From proposition 1.2.3, a

simplicial algebra F is an n-type if

πi(F) = 0 for i > n.

In this section we show how the k-skeleton of a free simplicial algebra occurs in describing

algebraic models of n-types.

4.2.1 1-TYPES

Assume given the 0-step of the construction of a free simplicial algebra of an R-algebra B =

R/I ,

E(0) : · · · −→ R −→ R −→ R
f
−→ B
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with En = R and the dn
i = sn

j = identity homomorphism. Writing K(R, 0) = E(0), it is easy to

see that

π0(K(R, 0))∼= R and πi(K(R, 0))∼= 0 for i > 0.

Thus algebras are algebraic models of the 1-types of the 0-skeleton E(0) of the ‘step-by-step’

construction.

4.2.2 2-TYPES

Again, given data for the 1-step of the construction of a free simplicial algebra which is

E(1) : . . . R[s0(X ), s1(X )] //
//

d0, d1, d2 //

R[X ]oo

s0, s1
oo

d0, d1 //
// R

s0
oo

f // R/I ,

with

d1
0 (X i) = 0, d1

1 (X i) = x i ∈ Ker f , s0(r) = r ∈ R.

From the definition, there is an isomorphism

π0(E
(1))∼= E(1)0 /d

1
1 (Kerd1

0 ).

Consider the morphism

d1
1 : Kerd1

0 −→ R,

one readily obtains Imd1
1 = I and E(1)0 = R. Thus

π0(E
(1))∼= R/I .

Take a 1-truncation of a free simplicial algebra E(1) as follows:

. . . 0 // R[X ]/P1

d0, d1 //
// R

s0
oo

f // R/I .

Let K(B, 1) denote this 1-truncated simplicial algebra. Using the proof of theorem 1.4.2, the

corresponding free crossed module is

∂1 : R+[X ]/P1 −→ R

By proposition 1.5.2, this becomes

Rn/Imd −→ R,
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where d is the first Koszul differential. From the routine calculation above and corollary

3.4.4, there are the following isomorphisms

π0(K(B, 1))∼= B, π1(K(B, 1))∼= Ker(Rn/Imd −→ R)

and

πi(K(B, 1))∼= 0 for i > 1.

It then follows that free crossed modules are algebraic models of 2-types of the 1-skeleton

of the free simplicial algebra.

4.2.3 3-TYPES

Suppose given the 2-skeleton E(2) of the construction of a free simplicial algebra

E(2) : . . . (R[s0(X ), s1(X )])[Y ]/P2
//
//

d0, d1, d2 //

R[X ]oo

s0, s1
oo

d0, d1 //
// R

s0
oo

f // R/I .

As above, one gets the same homotopy modules, for E(2), up to dimension 1:

π0(E(2))∼= B and π1(E(2))∼= Ker(R+[X ]/P1 −→ R).

By the remark in section 3.4, there is an isomorphism

π2(E
(2))∼= Ker(N E(2)2 /∂3(N E(2)3 ) −→ E(2)1 )

Since N E(2)2 = (R[s0(X ), s1(X )])+[Y ], the second homotopy module of the 2-skeleton looks

like

π2(E
(2))∼= Ker((R[s0(X ), s1(X )])

+[Y ]/P2 −→ R[X ])

where P2 is the second order Peiffer ideal.

Take a 2-truncation of a free simplicial algebra

. . . 0 // (R[s0(X ), s1(X )])[Y ]/P2
//
//

d0, d1, d2 //

R[X ]oo

s0, s1
oo

d0, d1 //
// R

s0
oo

f // R/I .

Let Frtr2(E) denote this 2-truncated free simplicial algebra. Using theorem 4.1.7, the corre-

sponding free 2-crossed module is

(R[s0(X ), s1(X )])
+[Y ]/P2

∂ 2−→ R+[X ]
∂1−→ R.
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From the above calculation, one has to get the subsequent isomorphisms:

π0(Frtr2(E))∼= B, π1(Frtr2(E))∼= Ker(R+[X ]/P1 −→ R)

and

π2(Frtr2(E))∼= Ker((R[s0(X ), s1(X )])
+[Y ]/P2 −→ R[X ])

and finally

πi(Frtr2(E))∼= 0 for i > 2.

Hence free 2-crossed modules of algebras are algebraic models of 3-types of the 2-

skeleton of the free simplicial algebra.
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CHAPTER 5

CROSSED SQUARES AND CROSSED

N-CUBES

5.1 CROSSED SQUARES

A 2-dimensional version of a crossed module, called a crossed square, was defined by D.Guin-

Waléry and J.L.Loday, [25] in 1981. The commutative algebra analogue has been studied

by G.J.Ellis [18]. In this section, we show how higher order Peiffer identities are present in

the definition of a crossed square.

Definition 5.1.1 A crossed square of algebras is a commutative diagram of commutative al-

gebras

B

δ′

��

δ // D

∂ ′

��
C

∂
// R

together with actions of R on B, C and D. There are thus commutative actions (see chapter 1) of

C on B and D via ∂ , and D acts on B and C via ∂ ′ and a function h : C × D→ B such that, for

all c, c′ ∈ C , d, d ′ ∈ D, r ∈ R, b ∈ B, k ∈ k;

1. each of the maps δ, δ′, ∂ , ∂ ′ and the composite ∂ ′δ = ∂ δ′ are crossed modules,
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2. the maps δ,δ′ preserve the action of R,

3. kh(c, d) = h(kc, d) = h(c, kd),

4. h(c + c′, d) = h(c, d) + h(c′, d),

5. h(c, d + d ′) = h(c, d) + h(c, d ′),

6. r · h(c, d) = h(r · c, d) = h(c, r · d),

7. δh(c, d) = c · d,

8. δ′h(c, d) = d · c,

9. h(c,δb) = c · b,

10. h(δ′b, d) = d · b.

A morphism of crossed squares Φ : (B, C , D, R) → (B′, C ′, D′, R′), consists of homomor-

phisms

ΦB : B→ B′ ΦC : C → C ′

ΦD : D→ D′ ΦR : R→ R′,

such that the cube of homomorphisms is commutative;

ΦBh(c, d) = h(ΦC c,ΦDd) with c ∈ C , d ∈ D,

and each of homomorphisms ΦB,ΦC ,ΦD is ΦR-equivariant. The category of crossed squares

will be denoted, Crs2.

Example 5.1.2 Let I1, I2 be ideals of the k-algebra R. The commutative diagram of inclusions;

I1 ∩ I2

inc.

��

inc. // I2

inc.

��
I1 inc.

// R

together with the actions of R on I1, I2 and I1 ∩ I2 given by multiplication and the function

h : I1 × I2 −→ I1 ∩ I2

(i1, i2) 7−→ i1i2,

is a crossed square as is easily checked.
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Proposition 5.1.3 Let E be a simplicial algebra with simplicial ideals I1 and I2. Then a square

I1 ∩ I2

��

// I2

��
I1

// E

induces a crossed square

π0(I1 ∩ I2)

��

// π0(I2)

��
π0(I1) // π0(E).

Proof: The h-function

h : π0(I1)×π0(I2) −→ π0(I1 ∩ I2)

is given by

h([a], [b]) = [a][b] = [ab]

for all [a] ∈ π0(I1), [b] ∈ π0(I2). It follows from lemma 1.3.5 that the above diagram is a

crossed square. 2

Here again the generating elements of ∂3N E3 pays off the following result.

Proposition 5.1.4 Let E be a simplicial algebra. Then the following diagram

N E2/∂3N E3

δ′

��

δ // N E1

∂ ′

��
N E1

∂
// E1

is a crossed square. Here N E1 =Kerd1
0 and N E1 =Kerd1

1 .
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Proof: Since E1 acts on N E2/∂3N E3, N E1 and N E1, there are actions of N E1 on

N E2/∂3N E3 and N E1 via ∂ , and N E1 acts on N E2/∂3N E3 and N E1 via ∂ ′. As ∂ and ∂ ′

are inclusions, all actions can be given by multiplication. The h-map is

N E1 × N E1 −→ N E2/∂3N E3

(x , y) 7−→ h(x , y) = s1 x(s1 y − s0 y) + ∂3N E3,

which is bilinear. Here x and y are in N E1 as there exists a bijection between N E1 and N E1

(by lemma 2.3.1). We next verify the crossed square axioms.

Axiom (1) : the two morphisms with codomain E1 are inclusions of ideal subalgebras

hence are crossed modules; the two with domain N E2/∂3N E3 are induced by d2. Thus ∂

and ∂ ′ can be easily shown to be crossed modules as they are inclusions. In the following

we just verify that the composite ∂ ′δ is a crossed module.

If a+ ∂3N E3, b+ ∂3N E3 ∈ N E2/∂3N E3, it then follows that

(∂ ′δ)(a+ ∂3N E3) · (b+ ∂3N E3) = ∂ ′δ(a) · b+ ∂3N E3

= ∂ ′s1d2(a)b+ ∂3N E3 by the action

= s1d2(a)b+ ∂3N E3 by ∂ ′ inclusion

≡ ab+ ∂3N E3 mod ∂3N E3

= (a+ ∂3N E3)(b+ ∂3N E3)

As it is seen, the verifying of ∂ ′δ is more or less identical the proof that

N E1/∂2N E2 −→ N E0

is a crossed module (see section 3.4). Likewise δ,δ′ and ∂ δ′ are crossed modules.

Axioms (2), (3) are obvious. Since the h-map is bilinear that implies axioms (4) and (5)

hold. Axiom (6) is also easily checked (see P L5 of proposition 4.1.3).

Axiom (7) :

δh(x , y) = d2(s1 x(s1 y − s0 y))

= x y − xs0d1 y

≡ x y since ∂2(N E2)

= x · y.

as C(1)(0)(x ⊗ y) = s1 x(s0 y − s1 y) (see section 2.4.1) and d2C(1)(0)(x ⊗ y) = x(s0d1 y − y).

Similarly the following axiom, (8), δ′h(x , y) = −y · x is satisfied.
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Axiom (9) : For z ∈ N E2/∂3N E3,

h(x ,δz) = s1 x(s1d2z − s0d2z)

= s1(x)s1d2z − s1(x)s0d2z

≡ s1(x)z mod ∂3N E3

= x · z.

(See for details the b of P L4 of proposition 4.1.3.)

Axiom (10) :

h(δ′z, y) = s1d2z(s1 y − s0 y)

= s1d2(z)s1 y − s1d2(z)s0 y

≡ −(s1 y − s0 y)z mod ∂3N E3

= −(s1 − s0)(y)z

= −y · z by the definition of the action.

(See for details the a of P L4 of proposition 4.1.3). 2

This result presents the following functor

M2 :SimpAlg // Crs2

5.2 CROSSED N-CUBES

Crossed n-cubes in algebraic settings such as commutative algebras, Jordan algebras, Lie

algebras have been defined by G.J.Ellis [19]. Here we recall from [19] the case of crossed

n-cube of commutative algebras and give some examples.

Definition 5.2.1 A crossed n-cube of commutative algebras is a family of commutative al-

gebras, MA for A ⊆< n >= {1, ..., n} together with homomorphisms µi : MA → MA−{i} for

i ∈< n> and for A, B ⊆< n>, functions

h : MA×MB −→ MA∪B
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such that for all k ∈ k, a, a′ ∈ MA, b, b′ ∈ MB, c ∈ MC , i, j ∈< n> and A⊆ B

1) µia = a if i 6∈ A

2) µiµ ja = µ jµia

3) µih(a, b) = h(µia,µi b)

4) h(a, b) = h(µia, b) = h(a,µi b) if i ∈ A∩ B

5) h(a, a′) = aa′

6) h(a, b) = h(b, a)

7) h(a+ a′, b) = h(a, b) + h(a′, b)

8) h(a, b+ b′) = h(a, b) + h(a, b′)

9) k · h(a, b) = h(k · a, b) = h(a, k · b)

10) h(h(a, b), c) = h(a, h(b, c)) = h(b, h(b, c)).

A morphism of crossed n-cubes is defined in the obvious way: It is a family of commutative

algebra homomorphisms, for A⊆< n>

fA : MA −→ M ′A

commuting with the µi ’s and h’s. We thus obtain a category of crossed n-cubes denoted by

Crsn.

Example 5.2.2 For n = 1, a crossed 1-cube is the same as a crossed module. For n = 2, one

has a crossed square as above:

M<2>

µ1

��

µ2 // M{1}

µ1

��
M{2} µ2

// M;.

Each µi is a crossed module as is µ1µ2. The h-functions give actions and a function

h : M{1} ×M{2} −→ M<2>.

The maps µ2 (or µ1) also define a map of crossed modules. In fact a crossed square can be

thought of as a crossed module in the category of crossed modules.
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By an ideal (n+ 1)-ad will be meant an algebra with n-ideals (possibly with repeats).

Example 5.2.3 Let R be an algebra with ideals I1, . . . , In of R. Let

MA =
⋂

{Ii : i ∈ A} and M; = R

with A⊆< n> . If i ∈< n>, then MA is the ideals of MA−{i}. Define

µi : MA −→ MA−{i}

to be the inclusion. If A, B ⊆< n>, then MA∪B = MA∩MB, let

h : MA×MB −→ MA∪B

(a, b) 7−→ ab

as MAMB ⊆ MA∩MB, where a ∈ MA, b ∈ MB. Then

{MA : A⊆< n>, µi , h}

is a crossed n-cube, called the inclusion crossed n-cube given by the ideal (n+1)-ad of commu-

tative algebras (R; I1, . . . , In).

Proposition 5.2.4 Let (E; I1, . . . , In) be a simplicial ideal (n+1)-ad of algebras and define for

A⊆< n>

MA = π0(
⋂

i∈A

Ii)

with homomorphisms µi : MA→ MA−{i} and h-maps induced by the corresponding maps in the

simplicial inclusion crossed n-cube, constructed by applying the previous example to each level.

Then {MA : A⊆< n>, µi , h} is a crossed n-cube.

Proof: As the proof is the obvious extension to crossed n-cubes of the proof for n = 2

above (proposition 5.1.3), it has been omitted. 2

Up to isomorphism, all crossed n-cubes arise in this way. In fact any crossed n-cube can

be realised (up to isomorphism) as a π0 of a simplicial inclusion crossed n-cube coming from

a simplicial ideal (n+1)-ad in which π0 is a non-trivial homotopy module.
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5.3 FROM SIMP.ALG. TO CRSn

In 1991, T.Porter [38] described the functor from the category of simplicial groups to that of

crossed n-cubes of groups.

In this section, we adapt his description to give an obvious analogue of this functor for

the algebra case. The functor here constructed is defined using the décalage functor studied

by Illusie [26] and Duskin [16] and is a π0-image of a functor taking values in a category of

simplicial ideal (n+1)-ads. The décalage functor forgets the last face operators at each level

of a simplicial algebra E and moves everything down one level. It is denoted by Dec. Thus

(DecE)n = En+1.

The last degeneracy of E yields a contraction of Dec1E as an augmented simplicial algebra,

Dec1E' K(E0, 0),

by an explicit natural homotopy equivalence (c.f. [16]). The last face map will be denoted

Dec1E −→ E.

Iterating the Dec construction gives an augmented bisimplicial algebra

[. . . Dec3E //
//
// Dec2E

δ1

//
δ0 // Dec1E]

which in expanded form is the total décalage of E:

[. . . Dec3E //
//
// Dec2E

δ1

//
δ0 // Dec1E]

δ0 // E.

(see [16] or [26] for details). The maps from DeciE to Deci−1E coming from the ith last face

maps will be labelled δ0, . . . ,δi−1 so that δ0 = dlast , δ1 = dlast but one and so on.

For a simplicial algebra E and a given n, we write M(E, n) for a crossed n-cube, arising

as a functor

M(−,n) : SimpAlg −→ Crsn.

The following data determines a crossed n-cube of algebras:
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Theorem 5.3.1 If E be a simplicial algebra, then the crossed n-cube M(E,n) is determined by:

(i) for A⊆< n>,

M(E, n)A =

⋂

j∈A Kerdn
j−1

dn+1
n+1 (Kerdn+1

0 ∩ {
⋂

j∈A Kerdn+1
j });

(ii) the inclusion
⋂

j∈A

Kerdn
j−1 −→

⋂

j∈A−{i}
Kerdn

j−1

induces the morphism

µi : M(E, n)A −→M(E, n)A−{i};

(iii) the functions, for A, B ⊆< n>,

h : M(E, n)A×M(E, n)B −→M(E, n)A∪B

given by

h( x̄ , ȳ) = x̄ ȳ ,

where an element of M(E, n)A is denoted by x̄ with x ∈
⋂

j∈AKerdn
j−1.

Proof: For each simplicial algebra, E, we start by looking at the canonical augmentation

map

δ0 : Dec1E −→ E,

which has kernel the simplicial algebra, Kerdlast used above. Then take the simplicial inclu-

sion crossed module

Kerδ0 −→ Dec1E

to beM (E, 1) defining thus a functor

M ( , 1) : SimpAlg −→ Simp(IncCrs1).

Then it is easy to show that

π0(Kerδ0) −→ π0(Dec1E)

is precisely M(E, 1). The higher order analoguesM ( , 1) are as follows: For each simplicial

algebra, E, there is a functorial short exact sequence

Kerδ0 −→ Dec1E −→ E.
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This corresponds to the 0-skeleton of the total décalage of E, i.e.

[. . . Dec3E //
//
// Dec2E

δ1

//
δ0 // Dec1E]

δ0 // E.

For n= 2, the 1-skeleton of that total décalage gives a commutative diagram

Dec2E

δ1

��

δ0 // Dec1E

δ0

��
Dec1E

δ0 // E.

Here δ1 is dn
n−1 in dimension n whilst δ0 is dn

n . Forming the square of kernels gives

Kerδ0 ∩ Kerδ1

��

// Kerδ1

��
Kerδ0

// Dec2E.

Again, π0 of this gives M(E, 2). In general, we use the (n − 1)-skeleton of the total dé-

calage to form an n-cube. Thus a simplicial inclusion crossed n-cube continuing this n-times

given the simplicial inclusion crossed n-cube corresponding to the simplicial ideal (n+1)-ad

(DecnE; Kerδn+1, . . . ,Kerδ0). This simplicial inclusion n-cube will be denoted by M (E, n),

and its associated crossed n-cube by

π0(M (E, n)) =M(E, n).

This follows from Proposition 5.2.4 that the description ofπ0 as the H0 of the Moore complex.

So the formula in (i) is somewhat simple by the definition of H0. 2

The following lemma is proved by Porter for the group case. His proof adapts easily but

is included for completeness.

Lemma 5.3.2 If E is a simplicial algebra with A⊆< n>, A 6=< n>, then

dn(
⋂

i∈A

Kerdn
i ) =

⋂

i∈A

Kerdn−1
i−1 .
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Proof: If i ∈ A, then

dn(
⋂

i∈A

Kerdn
i ) ⊆

⋂

i∈A

Kerdn−1
i−1 ,

since di−1dn = dn−1di−1.

Conversely, we suppose that x is an element in
⋂

i∈A Kerdn−1
i−1 and consider the element

y = sn x − sn−1 x + . . .+ (−1)n−ksk x =
n−k
∑

i=0

(−1)i+1si+k x ,

where k is the first integer in < n> \A. Then

dn y = x and di y = 0 for all i ∈ A

and hence y ∈
⋂

i∈A Kerdn
i implies x ∈ dn(

⋂

i∈A Kerdn
i ) as required. 2

This lemma gives the following proposition:

Proposition 5.3.3 If E is a simplicial algebra, then

i) for A⊆< n>, A 6=< n>,

M(E, n)A ∼=
⋂

i∈A

Kerdn−1
i−1

so that in particular, M(E., n); ∼= En−1; in every case the isomorphism is induced by d0,

ii) if A 6=< n> and i ∈< n>,

µi : M(E., n)A −→M(E., n)A\{i}

is the inclusion of an ideal,

iii) for j ∈< n>,

µ j : M(E., n)<n> −→
⋂

i 6= j

Kerdn+1
i

is induced by dn.

Proof: By theorem 5.3.1 and the previous lemma, one can obtain, for A 6=< n>,

M(E., n)A =

⋂

i∈A Kerdn
i−1

dn+1(Kerdn+1
0 ∩ {

⋂

i∈A Kerdn+1
i })

=

⋂

i∈A Kerdn
i−1

Kerdn
0 ∩ (

⋂

i∈A Kerdn
i−1).
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The epimorphism d0 : En→ En−1, which is d0s0 = id, can be restricted to an epimorphism
⋂

i∈A

Kerdn
i−1 −→

⋂

i∈A

Kerdn−1
i−1 ,

by lemma 5.3.2. It follows then that

Ker(
⋂

i∈A

Kerdn
i−1

d0−→
⋂

i∈A

Kerdn−1
i−1 ) = Kerdn

0 ∩ (
⋂

i∈A

Kerdn
i−1).

which completes the proof of (i).

(ii) and (iii) are now consequences. 2

Remark 5.3.4 1) For n= 0,

M(E., 0) = E0/d1(Kerd0)

∼= π0(E)

= H0(E).

2) For n= 1, M(E., n) is the crossed module

µ1 : Kerd1
0/d

2
2 (N E2) −→ E1/d

2
2 (Kerd2

0 ).

Since d2
2 (N E2) =Kerd1

0 Kerd1
1 , this implies

µ : N E1/Kerd1
0 Kerd1

1 −→ E0.

3) For n= 2, M(E., n) is

Kerd2
0 ∩Kerd2

1/d
3
3 (Kerd3

0 ∩Kerd3
1 ∩Kerd3

2 )

µ1

��

µ2 // Kerd2
0/d

3
3 (Kerd3

0 ∩Kerd3
1 )

µ1

��
Kerd2

1/d
3
3 (Kerd3

0 ∩Kerd3
2 )

µ2 // E2/d
3
3 (Kerd3

0 ).

By proposition 5.3.3, this is isomorphic to

N E2/d
3
3 (N E3)

µ1

��

µ2 // Kerd1
0

µ1

��
Kerd1

1

µ2 // E1.

is the crossed square in which proposition 5.1.4 confirms this result.
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D.Conduché’s unpublished work determines that there exists an equivalence (up to ho-

motopy) between the category of crossed squares of groups and that of 2-crossed modules

of groups. We think that this result is true for the commutative algebra case, but we have

not proved it. As for that, the situation in chapter 4 and chapter 5 may be abridged in the

following diagram

SimpAlg

N2

��

M2

{{
Crs2

( )2

// X2Mod.

S2

OO

5.4 FREE CROSSED SQUARES

G.Ellis, [21], in 1993 presented the notion of a free crossed square for the case of groups.

In this section, we introduce the commutative algebra version of this definition and give a

construction of a free crossed square by using the second order Peiffer elements and the

2-skeleton of step-by-step construction of a free simplicial algebra.

We firstly define the free crossed square on a pair of function ( f2, f3).

Definition 5.4.1 Let (L, M , M̄ , M o R) be a crossed square. Suppose given a function f2 :

S2→R, from a set S2 to an algebra R. Let ∂ : M → R be the free pre-crossed module on f2.

Assume given a function from a set S3 to M , namely f3 : S3→ M . Then

(L, M , M̄ , M oR) is said to be a free crossed square on a pair of functions ( f2, f3) if for any

crossed square (T, M , M̄ , M o R) and function ν : S3 → T, there is a unique morphism φ of
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crossed squares:

L λ //

λ′

��

��

M

##

µ

��

T τ //

τ′

��

M

µ

��

M

  

// M o R

$$
M

µ // M o R

such that τν= λ.

We denote such a free crossed square of algebras by (L, M , M̄ , M o R). The category of

free crossed squares will be denoted, FrCrs2.

We will present a precise description of the construction of a free crossed square by using

the third property of remark 5.3.4 and the second order Peiffer ideal. To do this we need

to recall the 2-dimensional construction for a free simplicial algebra in Ellis’s notation. This

2-dimensional form can be pictured by the diagram

E(2) : . . . (R[s0(S2), s1(S2)])[S3] //
//

d0, d1, d2 //

R[S2]oo

s0, s1
oo

d0, d1 //
// R

s0
oo

f // B

with the simplicial identities given as before. Here S2 = {S1, . . . , Sn} and S3 = {S′1, . . . , S′m}

are finite sets and take R to be the algebra and B = R/(t1, . . . , tn) as an R-algebra.

Theorem 5.4.2 A free crossed square (L, M , M̄ , MoR) exists on the 2-dimensional construction

data.

Proof: Suppose given the 2-dimensional construction data for a free simplicial algebra

and a function

f2 : S2 −→ R.

From the routine calculation of lemma 3.4.1, we have

M = Kerd1
0 = N E(2)1 = R+[S2] = (S1, . . . , Sn),
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where explicit elements of R+[S2] are of the form

∑

α∈Λ
rαS i1

1 . . . S in
n

with Λ a set of multi-indices and some ri1,...,in ∈ R. It is easy to see that

∂1 : R+[S2] −→ R

is a free pre-crossed module on f2, where ∂1 = d1. Since lemma 2.2.2, one form the semidi-

rect product as follows

R[S2] = E(2)1
∼= Kerd1

0 o s0E(2)0 ,

= R+[S2]o s0R,

= M o s0R,

= M o R by s0(r) = r, for all r ∈ R,

and so E(2)1
∼= M o R. Then take the canonical inclusion

R+[S2] −→ R+[S2]o s0R

given by Si 7−→ (Si , 0). The other ideal of R[S2] is obtained from Kerd1
0 = R+[S2], namely

M̄ = Kerd1
1 = R+[S2] = (S1 − t1, . . . , Sn − tn),

where precise elements of R+[S2] are of the form

∑

α∈Λ
rα
�

(S i1
1 . . . S in

n )− (t
i1
1 . . . t in

n )
�

.

In other words, if m= Si , then m̄= Si − s0d1(Si) = Si − t i (by lemma 2.2.2), with t i ∈ R. So

we denote the elements m̄= (Si − ∂1Si). Assume given a function

f3 : S3 −→ R+[S2]

with Im f3 ⊆ Ker∂1. There is then a corresponding function :

f̄3 : S3 −→ M̄

y 7−→ ( f3 y, 0).
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Let (T, M , M̄ , M o R) be any crossed square and let function ν : S3 → T. We will show

that the free crossed square may be pictured by

L

∂

��

∂ ′ // R+[S2]

λ′

��
R+[S2]

λ
// R+[S2]o R.

In other words,

L

∂

��

∂ ′ // Kerd1
0

λ′

��

Kerd1
1 λ

// E(2)1
∼= Kerd1 o s0E(2)0 .

Taking L = N E(2)2 /∂3(N E(2)3 ) which gives the crossed 2-cube M(E(2), 2 ), namely

N E(2)2 /∂3(N E(2)3 )

µ1

��

µ2 // Kerd1
0

µ1

��

Kerd1
1

µ2 // E(2)1 .

Next investigate L. As for the above notations in the 2-skeleton of the free simplicial algebra

and by proposition 2.4.1, ∂3(N E(2)3 ) is generated by elements of the form

(s1s0d1Si − s0Si)S′j ,

(s0Si − s1Si)(s1d2S′j − S′j),

s1Si(s0d2S′j − s1d2S′j + S′j),

and for S′i , S′j ∈ N E2,

S′i(s1d2S′j − S′j),

S′i(S
′
j + s0d2S′j − s1d2S′j),

(s0d2S′i − s1d2S′i + S′i)(s1d2S′j − S′j),
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which are the second order Peiffer elements, where Si ∈ N E1 = Kerd0 = R+[S2] and S′i ∈

N E2 =Kerd0∩Kerd1 = (R[s0(S2), s1(S2)])+[S3].

The above diagram can be given by

(R[s0(S2), s1(S2)])+[(S3)]/P2

∂

��

∂ ′ // R+[S2]

λ′

��
R+[S2]

λ
// R+[S2]o R

(∗)

here P2 is the second order Peiffer ideal in (R[s0(S2), s1(S2)])+[S3]. Hence there exists a

unique morphism

φ : (L, M , M̄ , M o R) −→ (T, M , M̄ , M o R)

is given by

φ(S′i + P2) = ν(S
′
i)

such that τν = ∂ ′, where τ : T → M̄ is a morphism. Thus diagram (∗) is the desired free

crossed square on the 2-dimensional construction data. In a similar way to proposition 5.1.4,

the free crossed square axioms may be verified. 2

We have thus showed that the construction of free crossed square corresponds to the

crossed 2-cubes. Therefore we can say that M(E(2), 2 ) is a free crossed square.

By a ‘step-by-step’ construction of a free simplicial algebra, there are simplicial inclusions

E(0) ⊆ E(1) ⊆ E(2) . . .

Considering the functor, described the previous section, M(E, n) from the category of sim-

plicial algebras to that of crossed n-cubes which gives the ensuing inclusions

M(E(0), n) ,→M(E(1), n) ,→M(E(2), n) ,→ . . .

We investigate M(E(i), n), for n= 0, 1,2.

Firstly look at M(E(0), n), where the 0-skeleton E(0) is

E(0) : · · · −→ R −→ R −→ R
f
−→ B

with the dn
i = sn

j = identity homomorphisms.
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For n= 0, there is an equality

M(E(0), 0) =E(0)0 /d1(Kerd0) = R,

and so M(E(0), 0) is just an algebra.

For n= 1, M(E(0),1) is

N E(0)1 /∂2N E(0)2 −→ E0.

It is easy to show that N E(0)1 /∂2N E(0)2 is trivial in the 0-skeleton E(0) and hence

M(E(0), 1)∼= (0 −→ R)

which is the crossed module by example 1.3.4.

And for n= 2, M(E(0), 2) is the trivial crossed square

N E2/d
3
3 (N E3) //

��

Kerd1
0

��

0 //

��

0

��

=

Kerd1
1

// E1 0 // R.

Secondly take M(E(1), n) and recall that the 1-skeleton E(1) is

E(1) : . . . R[s0(S2), s1(S2)]) //
//

d0, d1, d2 //

R[S2]oo

s0, s1
oo

d0, d1 //
// R

s0
oo

f // R/I .

For n= 0, it follows from section 4.3.2 that M(E(1), 0) is

E(1)0 /d1(Kerd0)∼= R/I

which is π0(E(1)).

Let n= 1. Applying section 3.5 which implies the following result

M(E(1), 0) = (N E1/∂2N E2 −→ E0)

= (R+[Si]/P1 −→ R)

which is the free crossed module by theorem 1.4.2.
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For n= 2, M(E(1), 2) simplifies to give ( up to isomorphism )

N E2/d
3
3 (N E3) //

��

Kerd1
0

��

R+[s0(S2), (S2)]/P2
//

��

R+[S2]

��

=

Kerd1
1

// E1 R+[S2] // R[S2]

which is a crossed square.

Let us next look for M(E(2), n). Again recall the 2-skeleton E(2)

. . ./(R[s0(S2), s1(S2)])[S3] //
//

d0, d1, d2 //

R[S2]oo

s0, s1
oo

d0, d1 //
// R

s0
oo

f // R/I .

The subsequent equalities can be easily obtained by direct calculation : for n= 0,

M(E(2), 0)=E0/d1(Kerd0)∼= π0(E
(2)) =M(E(1), 0).

For n= 1,

M(E(2), 1)∼=(R+[Si]/P1→ R) =M(E(1), 1).

Finally, let n= 2. Since by an earlier result of this section, M(E(2),2) corresponds to the free

crossed square, namely

N E2/d
3
3 (N E3) //

��

Kerd1
0

��

(R[s0(S2), (S2)])+[S3]/P2
//

��

R+[S2]

��

=

Kerd1
1

// E1 R+[S2] // R[S2].

Thus we have the following relations

M(E(2), 0) =M(E(1), 0), M(E(2), 1) =M(E(1), 1)

and

M(E(2), 2) =M(E(3), 2)
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and so on. We present the following conjecture:

Conjecture
�

M(E(i), n)
	

i>1 = M(E( j), n) if j ≥ n+ 1.

5.5 CONCLUSIONS

Lower dimensional Peiffer elements for simplicial groups had been noted in [10]. In this

thesis, we have extended these Peiffer elements for simplicial algebras to dimension four

and given some technical results for higher dimensions. Up to dimension four, we have

shown that

∂n(N En) =
∑

{I ,J}

KI KJ

for ; 6= I , J ⊂ [n− 1] = {0,1, . . . , n− 1} with I ∪ J = [n− 1], where

KI =
⋂

i∈I

Kerdi and KJ =
⋂

j∈J

Kerd j

by using the hand calculation. In general for n> 4, we can only prove
∑

{I ,J}

KI KJ ⊆ ∂n(N En).

To prove the opposite inclusion, we have a general argument for I∩J = ; and I∪J = [n−1].

But for I ∩ J 6= ;, we could not say anything about it. One should be able to develop this

result by means of the computer algebra software such as AXIOM or MAPLE.

Given the importance of the vanishing of these elements in the construction of the cotan-

gent complex of Lichtenbaum and Schlessinger, [31], and the simplicial version of the cotan-

gent complex of Quillen [39], André [1] and Illusie [26], it is natural to hope for higher order

analogues of this result and for an analysis and interpretation of the structure of the resulting

elements in N En, n≥ 2.

The free crossed modules for commutative algebras has been shown in [36] to be closely

related to Koszul complexes (which is placed the last section of chapter one) that if (C , R,∂ )

is a free crossed module R-module on a function f : Y → R, with Y = {y1, . . . yn}, then there

is a natural isomorphism

C ∼= Rn/Imd,

where d : Λ2Rn → Rn is the Koszul differential. We believe that the material mentioned

above together with section 3.4, may allow one to find if there is a deeper connection with

the Koszul complex.
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We have explored the relation between 2-Crossed Modules and Crossed Squares in chap-

ter four and five. One ought to be able to examine the connections between 3-Crossed

Modules, defined by Carrasco [12], and Crossed 3-cubes by applying the fourth order Peiffer

elements. The freeness property of these structures can be obtained in terms of the ‘step-by-

step’ construction with its 3-skeleton of a free simplicial algebras.

It is reasonable to expect all these results can be done for the other algebraic versions

such as groups, groupoids, Lie algebras and so on.
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